RESEARCH ON FAULT DIAGNOSIS METHOD OF ROLLING BEARING UNDER TIME-VARYING SPEED CONDITIONS

Shunming Li, Mengqi Feng, Jinzhao Yang , Siqi Gong, and Jiangtao Lu

References

  1. [1] S. Li, Y. Hou, J. Lu, and M. Feng, A refined multiscale symbolicdiverse entropy technique for detecting weak faults in rotatingmachinery, Applied Sciences, 13(13), 2023, 7576.
  2. [2] S.Q. Gong , S.M. Li, Z.Z. Zhang, and M. Xia, Nonlinear blinddeconvolution based on generalized normalised lp /lq norm forearly fault detection, IEEE Transactions on Instrumentationand Measurement, 73, 2024, 3507512.
  3. [3] G.E. Hinton, and R.R. Salakhutdinov, Reducing the dimen-sionality of data with neural networks, Science (New York,N.Y.), 313(5786), 2006, 504-7.
  4. [4] S. Zhang, Intelligent detection method research and applicationfor local mechanical faults in computer numerical controlmachine tools, Mechatronic Systems and Control, 52(4): 2024,260-271.
  5. [5] T. Shen, S.M. Li, and Y. Xin, Review of research on faultdiagnosis of rotating machinery based on deep learning,Computer Measurement and Control, 28(9), 2020, 1-8.
  6. [6] N.H. Jiang, and C Li, Active collision avoidance control basedon convolutional neural network for blind zone perception ofautomotive sensors, Mechatronic Systems and Control, 52(4),2024, 234-242
  7. [7] K. Xu, S. Li, J. Wang, Z. An, and Y. Xin, A novel adaptiveand fast deep convolutional neural network for bearing faultdiagnosis under different working conditions, Proceedings ofthe Institution of Mechanical Engineers Part D Journal ofAutomobile Engineering, 234(4), 2020, 1167–1182.
  8. [8] K. Zhang, Z. Tian, X. Chen, L. Liao, and J. Wu, Application ofmulti-channel and multi-component decomposition method ingear fault feature extraction under variable speed conditions,Chinese Mechanical Engineering, 33(20), 2022, 2483–2491.
  9. [9] S. Yaqubi, M. Homaeinezhad, and M.R. Homaeinezhad,Adaptive fuzzy-wavelet neural networks- based real-time modelgeneration for increasing tracking precision of multivariableservo actuator, Mechatronic Systems and Control, 50(1), 2022,49-54.
  10. [10] Z. An, S. Li, J. Wang, and W. Qian, An intelligent faultdiagnosis method in the case of rotating speed fluctuations,in Proceeding of Prognostics and System Health ManagementConference, Harbin, China, 2017, 1–6.
  11. [11] J. Wang, S. Li, W. Qian, Z. An, and W. Zhang, Research onintelligent fault diagnosis method for rolling bearings underlarge speed fluctuations, Journal of Vibration Engineering,33(2), 2020, 391–399.
  12. [12] L. Zhang, Research on fault diagnosis method of rolling bearingsunder variable speed operating conditions based on synchronousextraction transformation, Shijiazhuang: Shijiazhuang RailwayUniversity, 2019.
  13. [13] S. Li, Y. Hou, J. Lu, and M. Feng, A refined multiscale symbolicdiverse entropy technique for detecting weak faults in rotatingmachinery, Applied Sciences, 13(13), 2023, 7576.
  14. [14] K. Xu, S. Li, R. Li, J. Lu, and M. Zeng, Deep domain adversarialmethod with central moment discrepancy for intelligent transferfault diagnosis, Measurement Science and Technology, 32(12),2021, 124005.
  15. [15] R. Li, S. Li, K. Xu, M. Zeng, and X. Li, Auxiliarygenerative mutual adversarial networks for class- imbalancedfault diagnosis under small samples, Chinese Journal ofAeronautics, 36(9),2023, 464–478.
  16. [16] R. Li, S. Li, K. Xu, M. Zeng, and X. Li, Dual generativeadversarial networks combining conditional assistance andfeature enhancement for imbalanced fault diagnosis, StructuralHealth Monitoring, 23(1), 2024, 265-282.
  17. [17] J. Xiang and G. Zhu, Joint face detection and facial expressionrecognition with MTCNN, in Proceeding of 4th InternationalConference on Information Science and Control Engineering,Changsha, China, 2017.
  18. [18] X. Zheng, A crane gearbox fault diagnosis method incorporatingSVM and muti-case migration learning, Mechatronic Systemsand Control, 52(2), 2024, 91-100
  19. [19] T. Ozaki, N. Ohta, and M. Fujiyoshi, Neuro-inspired scalableserial sensor network by sequential signal propagation, IEEESensors Journal, 23(17), 2023, 20275-20282.
  20. [20] C. Jin, W. Li, C. Ji, X. Jin, and Y. Guo, Bi-directionallong short-term memory neural networks for Chinese wordsegmentation, Journal of Chinese Information Processing,32(2), 2018, 29–37.
  21. [21] Y. Jiang, H. Huang, R. Li, X. Liu, and X. Chen, Prediction ofdynamic characteristics for load- and position-dependent 5-axismachine tools using Nadam algorithm, Journal of MechanicalScience and Technology, 38(10), 2024, 5241-5254.
  22. [22] M. Zeng, S. Li, R. Li, J. Li, K. Xu, and X. Li, A transfer-learningfault diagnosis method considering nearest neighbor featureconstraints, Measurement Science and Technology, 34(1), 2023,015114.
  23. [23] H. Huang, and N. Baddour, Bearing vibration data collectedunder time-varying rotational speed conditions, Data in brief,21, 2018, 1745-1749.

Important Links:

Go Back