MODIFIED SOCIAL OPTIMIZATION ALGORITHM WITH APPLICATION IN REACTIVE POWER CONTROL

Darshi Razieh, Khandani Khosro, Siamakan Mohammad Hossein Mozaffari

References

  1. [1] J. Kennedy, & R. Eberhart. Particle swarm optimization.In Proceedings of ICNN'95-International Conference onNeural Networks. IEEE. Vol. 4, pp. 1942-1948, November1995.
  2. [2] D. Karaboga, & B. Basturk. A powerful and efficientalgorithm for numerical function optimization: artificialbee colony (ABC) algorithm. Journal of global optimization,39(3), 2007, 459-471.
  3. [3] M. Dorigo, M. Birattari, & T. Stutzle. Ant colonyoptimization. IEEE computational intelligence magazine,1(4), 2006, 28-39.
  4. [4] S. Mirjalili, S. M. Mirjalili, & A. Lewis. Grey wolf optimizer.Advances in engineering software, 69, 2014, 46-61.
  5. [5] A. H. Gandomi, & A. H. Alavi. Krill herd: a new bio-inspired optimization algorithm. Communications innonlinear science and numerical simulation, 17(12), 2012,4831-4845.
  6. [6] X. S. Yang, & S. Deb. Cuckoo search via Lévy flights.In 2009 World congress on nature & biologically inspiredcomputing (NaBIC). IEEE. pp. 210-214, December 2009.
  7. [7] S. Mirjalili, & A. Lewis. The whale optimization algorithm.Advances in engineering software, 95, 2016, 51-67.
  8. [8] S. Li, H. Chen, M. Wang, A. A. Heidari, & S. Mirjalili.Slime mould algorithm: A new method for stochasticoptimization. Future Generation Computer Systems. 2020.
  9. [9] G. Dhiman, & V. Kumar. Emperor penguin optimizer:A bio-inspired algorithm for engineering problems.Knowledge-Based Systems, 159, 2018, 20-50.
  10. [10] W. Fang, J. Sun, H. Chen, & X. Wu. A decentralizedquantum-inspired particle swarm optimization algorithmwith cellular structured population. Information Sciences,330, 2016, 19-48.
  11. [11] D. Ustun, & A. Akdagli. A study on the performance ofthe hybrid optimization method based on artificial beecolony and differential evolution algorithms. In 2017International Artificial Intelligence and Data ProcessingSymposium (IDAP). IEEE. pp. 1-5, September 2017.
  12. [12] M. F. Tahir, K. Mehmood, C. Haoyong, A. Iqbal, A.Saleem, & S. Shaheen. Multi-objective combined economicand emission dispatch by fully informed particle swarmoptimization. International Journal of Power and EnergySystems, 42(10). 2022.
  13. [13] E. S. M. El-Kenawy, S. Mirjalili, F. Alassery, Y. D. Zhang,M. M. Eid, S. Y. El-Mashad, ... & A. A. Abdelhamid.Novel meta-heuristic algorithm for feature selection,unconstrained functions and engineering problems. IEEEAccess, 10, 2022, 40536-40555.
  14. [14] D. S. Khafaga, A. A. Alhussan, E. S. M. El-Kenawy,A. Ibrahim, M. M. Eid, & A. A. Abdelhamid. Solvingoptimization problems of metamaterial and double T-shapeantennas using advanced meta-heuristics algorithms. IEEEAccess, 10, 2022, 74449-74471.
  15. [15] T. Ray, & K. M. Liew. Society and civilization: Anoptimization algorithm based on the simulation of socialbehavior. IEEE Transactions on Evolutionary Computation,7(4), 2003, 386-396.
  16. [16] E. Atashpaz-Gargari, & C. Lucas. Imperialist competitivealgorithm: an algorithm for optimization inspired byimperialistic competition. In 2007 IEEE congress onevolutionary computation. IEEE. pp. 4661-4667, September2007.
  17. [17] N. Ghorbani, & E. Babaei. Exchange market algorithm.Applied Soft Computing, 19, 2014, 177-187.
  18. [18] R. V. Rao, V. J. Savsani, & J. Balic. Teaching–learning-based optimization algorithm for unconstrained andconstrained real-parameter optimization problems.Engineering Optimization, 44(12), 2012, 1447-1462.
  19. [19] B. Das, V. Mukherjee, & D. Das. Student psychologybased optimization algorithm: A new population basedoptimization algorithm for solving optimization problems.Advances in Engineering Software, 146, 2020, 102804.
  20. [20] M. A. Soliman, H. M. Hasanien, M. S. El Moursi, & A.Al-Durra. Chaotic-billiards optimization algorithm-basedoptimal FLC approach for stability enhancement of grid-tied wind power plants. IEEE Transactions on PowerSystems, 37(5), 2021, 3614-3629.
  21. [21] A. Q. Badar, B. S. Umre, & A. S. Junghare. Reactivepower control using dynamic particle swarm optimizationfor real power loss minimization. International Journal ofElectrical Power & Energy Systems, 41(1), 2012, 133-136.
  22. [22] F. R. C. Soldevilla, & F. A. C. Huerta. Minimization ofLosses in Power Systems by Reactive Power Dispatch usingParticle Swarm Optimization. In 2019 54th InternationalUniversities Power Engineering Conference (UPEC).IEEE. pp. 1-5, September 2019.
  23. [23] C. W. T. N. J. Balu, & D. Maratukulam. Power systemvoltage stability. McGraw Hill. 1994.
  24. [24] J. Zhu. Optimization of power system operation. JohnWiley & Sons. 2015.
  25. [25] S. Kirkpatrick, C. D. Gelatt, & M. P. Vecchi. Optimizationby simulated annealing. science, 220(4598), 1983, 671-680.
  26. [26] O. K. Erol, & I. Eksin. A new optimization method: bigbang–big crunch. Advances in Engineering Software, 37(2),2006, 106-111.
  27. [27] V. K. Patel, & V. J. Savsani. Heat transfer search (HTS):a novel optimization algorithm. Information Sciences, 324,2015, 217-246.
  28. [28] Z. W. Geem, J. H. Kim, & G. V. Loganathan. A newheuristic optimization algorithm: harmony search.simulation, 76(2), 2001, 60-68.
  29. [29] M. Badi, S. Mahapatra, B. Dey, & S. Raj. A hybrid GWO-PSO technique for the solution of reactive power planningproblem. International Journal of Swarm IntelligenceResearch (IJSIR), 13(1), 2022, 1-30.
  30. [30] S. S. Gudadappanavar, & S. Mahapatra. Metaheuristicnature-based algorithm for optimal reactive powerplanning. International Journal of System AssuranceEngineering and Management, 13(3), 2022, 1453-1466.
  31. [31] R. Babu, V. Kumar, C. K. Shiva, S. Raj, & B.Bhattacharyya. Application of Sine–Cosine OptimizationAlgorithm for Minimization of Transmission Loss.Technology and Economics of Smart Grids and SustainableEnergy, 7(1), 2022, 1-12.
  32. [32] M. Badi, S. Mahapatra, & S. Raj. Hybrid BOA‐GWO‐PSO algorithm for mitigation of congestion by optimalreactive power management. Optimal Control Applicationsand Methods. 2021.
  33. [33] N. Karimi, & K. Khandani, (2020). Social optimizationalgorithm with application to economic dispatch problem.International Transactions on Electrical Energy Systems,e12593.13
  34. [34] G, S. Shekarappa, S. Mahapatra, & S. Raj. Voltageconstrained reactive power planning problem for reactiveloading variation using hybrid harris hawk particle swarmoptimizer. Electric Power Components and Systems, 49(4-5),421-435. 2021.
  35. [35] X. Kou. Particle Swarm Optimization Based ReactivePower Dispatch for Power Networks with DistributedGeneration. 2015.
  36. [36] B. Bhattacharyya, & S. Raj. PSO based bio inspiredalgorithms for reactive power planning. InternationalJournal of Electrical Power & Energy Systems, 74, 2016,396-402.
  37. [37] J. Rawls, (2009). A theory of justice. Harvard universitypress. 2009.

Important Links:

Go Back