AN ASSIST-AS-NEEDED CONTROL WITH FAULT-TOLERANT REGION FOR SAFE AND EFFECTIVE TRAINING ON END-EFFECTOR UPPER LIMB REHABILITATION ROBOT

Yangzuobin Ding, Xiaodong Liu, Peng Chen, He Bu, Simin Li, and Xiaobo Zhang

References

  1. [1] G. Kwakkel, Impact of intensity of practice after stroke: Issuesfor consideration, Disability and Rehabilitation, 28, 2006, 823.
  2. [2] C. Li, Z. Rus´ak, Y. Hou, C. Young, and L. Ji, Upper limb motorrehabilitation integrated with video games focusing on trainingfingers’ fine movements, International Journal of Robotics andAutomation, 29(4), 2014, 359–368.
  3. [3] A. Ehsani-Seresht, M.M. Moghaddam, and M.R. Hadian, Jointfunction control method for robotic gait training of strokepatients, International Journal of Robotics and Automation,35(3), 2020.
  4. [4] G. Yin, X. Zhang, and J.C. Chen, An approach for sEMG-basedvariable damping control of lower limb rehabilitation robot,International Journal of Robotics and Automation, 35(3), 2020,171–180.
  5. [5] T. Nef, M. Guidali, and R. Riener, ARMin III - arm therapyexoskeleton with an ergonomic shoulder actuation, AppliedBionics and Biomechanics, 6(2), 2009, 127–142.
  6. [6] B. Kim and A.D. Deshpande, Controls for the shouldermechanism of an upper-body exoskeleton for promotingscapulohumeral rhythm, Proc. IEEE International Conf. onRehabilitation Robotics, Singapore, 2015, 538–542.
  7. [7] H.I. Krebs, M. Ferraro, S.P. Buerger, M.J. Newbery, A.Makiyama, M. Sandmann, D. Lynch, B.T. Volpe, and N. Hogan,Rehabilitation robotics: Pilot trial of aspatial extension forMIT-Manus, Journal of NeuroEngineering and Rehabilitation,1, 2004, 1–15.
  8. [8] L. Rui, F. Amirabdollahian, M. Topping, B. Driessen, and W.Harwin, Upper limb robot mediated stroke therapy GENTLE/sapproach, Autonomous Robots, 15, 2003, 35–51.
  9. [9] S.H. Lee, G. Park, D.Y. Cho, H.Y. Kim, J.-Y. Lee, S. Kim, S.-B.Park, and J.-H. Shin, Comparisons between end-effector andexoskeleton rehabilitation robots regarding upper extremityfunction among chronic stroke patients with moderate-to-severeupper limb impairment, Journal of Biotechnology, 10(1), 2020,1–8.
  10. [10] M. Rubagotti, I. Tusseyeva, S. Baltabayeva, D. Summers, andA. Sandygulova, Perceived safety in physical human–robotinteraction—A survey, Robotics and Autonomous Systems, 151,2022, 104047.
  11. [11] T. Zhang, Q. Du, G. Yang, C.-Y. Chen, C. Wang, and Z.Fang, A review of compliant control for collaborative robots,Proc. 2021 IEEE 16th Conf. on Industrial Electronics andApplications (ICIEA), Chengdu, 2021, 1103–1108.
  12. [12] A. Toedtheide, X. Chen, H. Sadeghian, A. Naceri, and S.Haddadin, A force-sensitive exoskeleton for teleoperation:An application in elderly care robotics, Proc. 2023 IEEEInternational Conf. on Robotics and Automation (ICRA),London, 2023, 12624–12630.
  13. [13] B. Brahmi, M. Driscoll, I.K. El Bojairami, M. Saad,and A. Brahmi, Novel adaptive impedance control forexoskeleton robot for rehabilitation using a nonlinear time-delay disturbance observer, ISA Transactions, 108, 2021,381–392.
  14. [14] A. Zhai, H. Zhang, J. Wang, G. Lu, J. Li, and S. Chen,Adaptive neural synchronized impedance control for cooper-ative manipulators processing under uncertain environments,Robotics and Computer-Integrated Manufacturing, 75, 2022,102291.
  15. [15] L. Roveda, J. Maskani, P. Franceschi, and A. Abdi, Model-based reinforcement learning variable impedance control forhuman-robot collaboration, Journal of Intelligent & RoboticSystems, 100(2), 2020, 417–433.
  16. [16] M. Guidali, A. Duschau-Wicke, S. Broggi, V. Klamroth-Marganska, T. Nef, and R. Riener, A robotic system totrain activities of daily living in a virtual environment,Medical & Biological Engineering & Computing, 49(10), 2011,1213–1223.
  17. [17] Y. Ren, S.H. Kang, H.S. Park, Y.N. Wu, and L.Q.Zhang, Developing a multi-joint upper limb exoskeletonrobot for diagnosis, therapy, and outcome evaluation inneurorehabilitation, IEEE Transactions on Neural Systems andRehabilitation Engineering, 21(3), 2013, 490–499.
  18. [18] L.M. Miller and J. Rosen, Comparison of multi-sensoradmittance control in joint space and task space for a sevendegree of freedom upper limb exoskeleton, Proc. 2010 3rd IEEERAS & EMBS International Conf. on Biomedical Robotics andBiomechatronics, Tokyo, Japan, 2010, 70–75.
  19. [19] J. Bai, A. Song, T. Wang, and H. Li, A novel backsteppingadaptive impedance control for an upper limb rehabilitationrobot, Computers & Electrical Engineering, 80, 2019,106465.
  20. [20] Z. Warraich and J. Kleim, Neural plasticity: The biologicalsubstrate for neurorehabilitation, PM & R, 2, 2010, S208–S219.
  21. [21] L. Claude, J.C. Moreno, and P.J. Luis, Human-robot interfacesin exoskeletons for gait training after stroke: State of the artand challenges, Applied Bionics and Biomechanics, 9, 2014,193–203.
  22. [22] A. Duschau-Wicke, A. Caprez, and R. Riener, Patient-cooperative control increases active participation of individualswith SCI during robot-aided gait training, Journal ofNeuroEngineering and Rehabilitation, 7, 2010, 43.
  23. [23] P. Agarwal, B.R. Fernandez, and A.D. Deshpande, Assist-as-Needed Controllers for Index Finger Module of a HandExoskeleton for Rehabilitation, Proc, of the ASME 2015Dynamic Systems and Control Conf,, Columbus, Ohio, USA,October 28–30, 2015.8
  24. [24] U. Keller, G. Rauter, and R. Riener, Assist-as-needed pathcontrol for the PASCAL rehabilitation robot, Proc. 2013 IEEE13th International Conf. on Rehabilitation Robotics (ICORR),Seattle, WA, USA, 2013, 1–7.
  25. [25] A.U. Pehlivan, F. Sergi, and M.K. O’Malley, a subject-adaptive controller for wrist robotic rehabilitation,IEEE/ASME Transactions on Mechatronics, 20(3), 2015,1338–1350.
  26. [26] L. Zhang, S. Guo, and Q. Sun, An assist-as-needed controllerfor passive, assistant, active, and resistive robot-aidedrehabilitation training of the upper extremity, Applied Sciences,11(1), 2020.
  27. [27] M.Li, J. Zhang, G. Zuo, G. Feng, and X. Zhang, Assist-as-needed control strategy of bilateral upper limb rehabilitationrobot based on GMM, Machines, 10(2), 2022, 76.
  28. [28] A. Albu-Sch¨affer, C. Ott, and G. Hirzinger, A unified passivity-based control framework for position, torque and impedancecontrol of flexible joint robots, The International Journal ofRobotics Research, 26(1), 2007, 23–39.
  29. [29] L. Supic and T.C. Stewart, Learning over time using aneuromorphic adaptive control algorithm for robotic arms,2022, arXiv:2210.01243.
  30. [30] S.P. Chan and H.C. Liaw, Generalized impedance control ofrobot for assembly tasks requiring compliant manipulation,IEEE Transactions on Industrial Electronics, 43(4), 1996,453–461.
  31. [31] L. Bascetta and G. Ferretti, Ensuring safety in hands-on controlthrough stability analysis of the human-robot interaction,Robotics and Computer-Integrated Manufacturing, 57(JUN.),2019, 197–212.

Important Links:

Go Back