Minghui Chu, Tiansong Zhai, Fang Xie, Yang Li, and Taiyang Tao


  1. [1] R.C. Panda, Synthesis of PID controller for unstable andintegrating processes, Chemical Engineering Science, 64(12),2009, 2807–2816.
  2. [2] Y.J. Wang, Graphical computation of gain and phase marginspecifications-oriented robust PID controllers for uncertainsystems with time-varying delay, Journal of Process Control,21(4), 2011, 475–488.
  3. [3] Q.B. Jin, Q. Liu, and B. Huang, Control design fordisturbance rejection in the presence of uncertain delays, IEEETransactions on Automation Science and Engineering, 14(4),2015, 1570–1581.
  4. [4] E. Dincel and M.T. S¨oylemez, Robust PID controller designvia dominant pole assignment for systems with parametricuncertainties, Asian Journal of Control, 24(2), 2020,834–844.
  5. [5] X.J. Lyu and Z.L. Lin, PID control of planar nonlinear uncertainsystems in the presence of actuator saturation, IEEE/CAAJournal of Automatica Sinica, 9(1), 2021, 90–98.
  6. [6] W.C. Xie and Y.M. Sun, A new result on PD controller designfor second order nonlinear uncertain systems, Journal of theFranklin Institute, 359(14), 2022, 7307–7318.
  7. [7] P.J. Ning, C.C. Hua, K. Li, and H. Li, A novel theoremfor prescribed-time control of nonlinear uncertain time-delaysystems, Automatica, 152, 2023, 111009.
  8. [8] V.L. Kharitonov and S.I. Niculescu, On the stability of linearsystems with uncertain delay, IEEE Transactions on AutomaticControl, 48(1), 2003, 127–132.
  9. [9] I.R.Petersen and R. Tempo, Robust control of uncertainsystems: Classical results and recent developments, Automatica,50(5), 2014, 1315–1335.
  10. [10] S. Sondhi and Y.V. Hote, Fractional order PID controller forperturbed load frequency control using Kharitonov’s theorem,International Journal of Electrical Power & Energy Systems,78, 2016, 884–896.
  11. [11] S. Sondhi and Y.V. Hote, Relative stability test for fractional-order interval systems using Kharitonov’s theorem, Journal ofControl Automation & Electrical Systems, 27(1), 2016, 1–9.
  12. [12] F. Zhao, Y.C. Tian, M.O. Tad´e, and H. Li, A time-delay compensation strategy for processes with uncertainties,Computers & Chemical Engineering, 26(10), 2002, 1437–1447.
  13. [13] M. Bozorg and E.J. Davison, Control of time delay processeswith uncertain delays: Time delay stability margins, Journalof Process Control, 16(4), 2006, 403–408.
  14. [14] T. Chen, D. Cao, J. Yuan, and H. Yang, Observer-basedadaptive neural network backstepping sliding mode controlfor switched fractional order uncertain nonlinear systems withunmeasured states, Measurement and Control, 54(7–8), 2021,1245–1258.
  15. [15] P. Yang, Z. Liu, D. Li, B. Jiang, and J. Zhu, Slidingmode prediction fault-tolerant control method for multi-delayuncertain discrete system with sensor fault, Transactions of theInstitute of Measurement and Control, 43(7), 2021, 1519–1530.
  16. [16] K. Shao, J. Zheng, R. Tang, X. Li, Z. Man, and B. Liang, Barrierfunction based adaptive sliding mode control for uncertainsystems with input saturation, IEEE/ASME Transactions onMechatronics, 27(6), 2022, 4258–4268.
  17. [17] H. Sun, L. Tu, L. Yang, Z. Zhu, S. Zhen, and Y.H. Chen,Adaptive robust control for nonlinear mechanical systems withinequality constraints and uncertainties, IEEE Transactionson Systems, Man, and Cybernetics: Systems, 53(3), 2022,1761–1772.9
  18. [18] Y.J. Wang, Determination of all feasible robust PID controllersfor open-loop unstable plus time delay processes with gainmargin and phase margin specifications, ISA Transactions,53(2), 2014, 628–646.
  19. [19] M.H. Chu, C. Xu, and J.Z. Chu, Graphic IMC-PID tuning basedon maximum sensitivity for uncertain systems, Transactionsof the Institute of Measurement and Control, 41(8), 2019,2196–2204.
  20. [20] M. Chu, IMC-PID tuning method based on maximumsensitivity for uncertain multivariable systems, InternationalJournal of Robust and Nonlinear Control, 33(13), 2023,7395–7414.
  21. [21] Z.Y. Nie, C. Zhu, and Q.G. Wang, Design, analysis andapplication of a new disturbance rejection PID for uncertainsystems, ISA Transactions, 101, 2020, 281–294.
  22. [22] C. Zhao and L. Guo, Control of nonlinear uncertain systemsby extended PID, IEEE Transactions on Automatic Control,66(8), 2020, 3840–3847.
  23. [23] S. Zheng, Robust stability of fractional order system withgeneral interval uncertainties, Systems & Control Letters, 99,2017, 1–8.
  24. [24] M. Ghorbani, Robust stability analysis of interval fractional-order plants by fractional-order controllers: an approach toreduce additional calculation, International Journal of GeneralSystems, 50(1), 2021, 1–25.
  25. [25] Q.B. Jin, Q. Liu, Q. Wang, Y.Q. Tian, and Y.F. Wang, PIDcontroller design based on the time domain information ofrobust IMC controller using maximum sensitivity, ChineseJournal of Chemical Engineering, 21(5), 2013, 529–536.

Important Links:

Go Back