FORMATION TRACKING FOR A MULTI-AUV SYSTEM BASED ON AN ADAPTIVE SLIDING-MODE METHOD IN THE WATER FLOW ENVIRONMENT, 352-366.

Xin Li, Daqi Zhu, Bing Sun, Qi Chen, Wenyang Gan, and Zhigang Li

References

  1. [1] J.J. Leonard and A. Bahr, Autonomous underwater vehiclenavigation, (Cham: Springer International Publishing, 2016),ch. 14, 341–358.364
  2. [2] Z. Yu, J. Tao, J. Xiong, and S.X. Yang, Design and analysis ofpath planning for robotic fish based on neural dynamics model,International Journal of Robotics and Automation, 36(4), 2021,219–230.
  3. [3] R. Cui, S.S. Ge, B.V.E. How, and Y.S. Choo, Leader–followerformation control of underactuated autonomous underwatervehicles, Ocean Engineering, 37(17), 2010, 1491–1502.
  4. [4] Y. Li, X. Li, D. Zhu, and S.X. Yang, Self-competition leader–follower multi-AUV formation control based on improvedPSO algorithm with energy consumption allocation, Inter-national Journal of Robotics and Automation, 37(3), 2022,288–301.
  5. [5] W. Ren, Consensus tracking under directed interaction topolo-gies: Algorithms and experiments, IEEE Transactions onControl Systems Technology, 18(1), 2010, 230–237.
  6. [6] B. Zhu, L. Xie, D. Han, X. Meng, and R. Teo, A survey on recentprogress in control of swarm systems, Science China InformationSciences, 60(7), 2017, 70201.
  7. [7] W. Ren, Consensus strategies for cooperative control of vehicleformations, IET Control Theory Applications, 1(2), 2007,505–512.
  8. [8] Y. Cao, W. Ren, and Y. Li, Distributed discrete-time coordinatedtracking with a time-varying reference state and limitedcommunication, Automatica, 45(5), 2009, 1299–1305.
  9. [9] Y.-P. Tian and C.-L. Liu, Consensus of multi-agent systems withdiverse input and communication delays, IEEE Transactions onAutomatic Control, 53(9), 2008, 2122–2128.
  10. [10] P. Lin and Y. Jia, Further results on decentralised coordinationin networks of agents with second-order dynamics, IET ControlTheory Applications, 3(7), 2009, 957–970.
  11. [11] J. Wen, C. Wang, and G. Xie, Asynchronous distributed event-triggered circle formation of multi-agent systems, Neurocomput-ing, 295, 2018, 118–126.
  12. [12] X. Cai and M.D. Queiroz, Adaptive rigidity-based forma-tion control for multirobotic vehicles with dynamics, IEEETransactions on Control Systems Technology, 23(1), 2015,389–396.
  13. [13] J. Wang, D. Cheng, and X. Hu, Consensus of multi-agentlinear dynamic systems, Asian Journal of Control, 10(2), 2008,144–155.
  14. [14] Z. Li, Z. Duan, and G. Chen, Dynamic consensus of linear multi-agent systems, IET Control Theory Applications, 5(1), 2011,19–28.
  15. [15] F. Giulietti, M. Innocenti, M. Napolitano, and L. Pollini,Dynamic and control issues of formation flight, Aerospace Scienceand Technology, 9(1), 2005, 65–71.
  16. [16] Y. Yang, H. Modares, D.C. Wunsch, and Y. Yin, Leader–followeroutput synchronization of linear heterogeneous systems withactive leader using reinforcement learning, IEEE Transactionson Neural Networks and Learning Systems, 29(6), 2018,2139–2153.
  17. [17] W. Gan, D. Zhu, and S.X. Yang, A speed jumping-free trackingcontroller with trajectory planner for unmanned underwatervehicle, International Journal of Robotics and Automation, 35,2020, 339–346.
  18. [18] C. Hao, Y. Wang, H. Wang, and Z. Zhou, Model-free adaptivecontrol for time-varying trajectory tracking of non-linearsystems, International Journal of Robotics and Automation,34(1), 2019, 71–77.
  19. [19] B. Qin, H. Yan, H. Zhang, Y. Wang, and S.X. Yang, Enhancedreduced-order extended state observer for motion controlof differential driven mobile robot, IEEE Transactions onCybernetics, 53(2), 2023, 1299–1310.
  20. [20] Y. Chang, H. Yan, W. Huang, R. Quan, and Y. Zhang, A novelstarting method with reactive power compensation for inductionmotors, IET Power Electronics, 16(3), 2022, 402–412. [Online].Available: https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/pel2.12392
  21. [21] F. Fahimi, Sliding-mode formation control for underactuatedsurface vessels, IEEE Transactions on Robotics, 23(3), 2007,617–622.
  22. [22] K. Liu, Y. Wu, J. Xu, Y. Wang, Z. Ge, and Y. Lu, Fuzzysliding mode control of 3-DOF shoulder joint driven bypneumatic muscle actuators, International Journal of Roboticsand Automation, 34(1), 2019, 38–45.
  23. [23] Y. Shtessel, I. Shkolnikov, and M.D.J. Brown, A second-ordersmooth sliding mode control, Asian Journal of Control, 5, 2003,498–504.
  24. [24] C. Edwards and S. Spurgeon, Sliding mode control: Theory andapplications (Bristol: Taylor & Francis, 1998).
  25. [25] S. Soylu, B.J. Buckham, and R.P. Podhorodeski, A chattering-free sliding-mode controller for underwater vehicles with fault-tolerant infinity-norm thrust allocation, Ocean Engineering,35(16), 2008, 1647–1659.
  26. [26] G. Antonelli, F. Caccavale, S. Chiaverini, and G. Fusco, A noveladaptive control law for underwater vehicles, IEEE Transactionson Control Systems Technology, 11(2), 2003, 221–232.
  27. [27] B. Sun and D. Zhu, A chattering-free sliding-mode control designand simulation of remotely operated vehicles, Proc. ChineseControl and Decision Conf. (CCDC), Mianyang, May 2011,4173–4178.
  28. [28] L. Ma, Cooperative target tracking in concentric formations,International Journal of Robotics and Automation, 36, 2021,1–14.
  29. [29] T. Salgado-Jimenez and B. Jouvencel, Using a high order slidingmodes for diving control a torpedo autonomous underwatervehicle, Proc. Oceans Celebrating the Past ... Teaming Towardthe Future, 2, 2003, 934–939.
  30. [30] J. Davila, L. Fridman, and A. Levant, Second-order sliding-mode observer for mechanical systems, IEEE Transactions onAutomatic Control, 50(11), 2005, 1785–1789.
  31. [31] X. Li and D. Zhu, Formation control of a group of AUVs usingadaptive high order sliding mode controller, Proc. OCEANS -Shanghai, Shanghai, 2016, 1–6.
  32. [32] L. Kong, W. He, C. Yang, Z. Li, and C. Sun, Adaptive fuzzycontrol for coordinated multiple robots with constraint usingimpedance learning, IEEE Transactions on Cybernetics, 49(8),2019, 3052–3063.
  33. [33] J. Wang, C. Wang, Y. Wei, and C. Zhang, Sliding mode basedneural adaptive formation control of underactuated AUVs withleader–follower strategy, Applied Ocean Research, 94, 101971,2020.
  34. [34] C.-C. Meng and X.-Y. Zhang, Distributed leaderless formationcontrol for multiple autonomous underwater vehicles based onadaptive nonsingular terminal sliding mode, Applied OceanResearch, 115, 2021, 102781. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0141118721002571
  35. [35] G. Antonelli, S. Chiaverini, N. Sarkar, and M. West, Adaptivecontrol of an autonomous underwater vehicle: Experimentalresults on ODIN, IEEE Transactions on Control SystemsTechnology, 9(5), 2001, 756–765.
  36. [36] T.I. Fossen, Guidance and control of ocean vehicles, (Norway:John Wiley & Sons, 1994).
  37. [37] G. Antonelli, Underwater robots, (Berlin: Springer, 2014).
  38. [38] S.P. Hou and C.C. Cheah, PD control scheme for formationcontrol of multiple autonomous underwater vehicles, Proc.IEEE/ASME Int. Conf. on Advanced Intelligent Mechatronics,Singapore, July 2009, 356–361.
  39. [39] E.P. Chassignet, H.E. Hurlburt, E. Joseph Metzger, O. MartinSmedstad, J.A. Cummings, G.R. Halliwell, R. Bleck, R. Baraille,A.J. Wallcraft, C. Lozano, H.L. Tolman, A. Srinivasan, S.Hankin, P. Cornillon, R. Weisberg, A. Barth, R. He, F. Werner,and J. Wilkin, U.S. GODAE: Global ocean prediction withthe hybrid coordinate ocean model (HYCOM), Oceanography,22(2), 2009, 64–75.
  40. [40] A. Alvarez, A. Caiti, and R. Onken, Evolutionary path planningfor autonomous underwater vehicles in a variable ocean, IEEEJournal of Oceanic Engineering, 29(2), 2004, 418–429.
  41. [41] A. Levant, Higher-order sliding modes, differentiation andoutput-feedback control, International Journal of Control, 76(9–10), 2003, 924–941.
  42. [42] A. Pisano and E. Usai, Sliding mode control: A survey withapplications in math, Mathematics & Computers in Simulation,81(5), 2011, 954–979.
  43. [43] W. Gan, D. Zhu, and D. Ji, QPSO-model predictive control-based approach to dynamic trajectory tracking control forunmanned underwater vehicles, Ocean Engineering, 158, 2018,208–220.
  44. [44] A. Sousa, L. Madureira, J. Coelho, J. Pinto, J. Pereira, J. BorgesSousa, and P. Dias, LAUV: The man-portable autonomous365underwater vehicle, IFAC Proceedings Volumes, 45(5), 2012,268–274.
  45. [45] R.M. Jorge Estrela da Silva, B. Terra, and J.B. de Sousa,Modeling and simulation of the LAUV autonomous underwatervehicle, Proc. 13th IEEE IFAC Int. Conf. Methods and Modelsin Automation and Robotics, Szczecin, Aug 2007, 1–6.
  46. [46] M.M.M. Manh˜aes, S.A. Scherer, M. Voss, L.R. Douat, andT. Rauschenbach, UUV simulator: A gazebo-based packagefor underwater intervention and multi-robot simulation, Proc.OCEANS MTS/IEEE Monterey, Monterey, 2016, 1–8.

Important Links:

Go Back