LOW-COMPLEXITY CHANNEL ESTIMATION AND MULTI-USER DETECTION IN MIMO-ENABLED UAV-ASSISTED MASSIVE IoT ACCESS, 231-240.

Xiangxue Ma, Changbin Tian, Wenbo Chen, Bo Peng, and Xin Ma

References

  1. [1] Y. Zeng, Q. Wu, and R. Zhang, Accessing from the sky:A tutorial on UAV communications for 5G and beyond,Proceedings of the IEEE, 107(12), 2019, 2327–2375.
  2. [2] Y. Wang, W. Feng, J. Wang, and T.Q.S. Quek, Hybridsatellite-UAV-terrestrial networks for 6G ubiquitous cover-age: A maritime communications perspective, IEEE Jour-nal on Selected Areas in Communications, 39(11), 2021,3475–3490.
  3. [3] Y. Liu, Z. Qin, Y. Cai, Y. Gao, G.Y. Li, and A. Nallanathan,UAV communications based on non-orthogonal multiple access,IEEE Wireless Communications, 26(1), 2019, 52–57.
  4. [4] X. Mu, Y. Liu, L. Guo, and J. Lin, Non-orthogonal multipleaccess for air-to-ground communication, IEEE Transactionson Communications, 68(5), 2020, 2934–2949.
  5. [5] L. Lyu, C. Chen, N. Cheng, S. Zhu, X. Guan, and X.Shen, NOMA-assisted on-demand transmissions for monitoringapplications in industrial IoT networks, IEEE Transactions onVehicular Technology, 69(10), 2020, 264–276.
  6. [6] X. Chen, D.W.K. Ng, W. Yu, E.G. Larsson, N. Al-Dhahir,and R. Schober, Massive access for 5G and beyond, IEEEJournal on Selected Areas in Communications, 39(3), 2021,615–637.
  7. [7] L. Liu and W. Yu, Massive connectivity with massive MIMO—Part II: Achievable rate characterization, IEEE Transactionson Communications, 66(11), 2018, 2947–2959.238
  8. [8] Z. Ding, X. Lei, G.K. Karagiannidis, R. Schober, J. Yuan, andV.K. Bhargava, A survey on non-orthogonal multiple accessfor 5G networks: Research challenges and future trends, IEEEJournal on Selected Areas in Communications, 35(10), 2017,2181–2195.
  9. [9] M.B. Shahab, R. Abbas, M. Shirvanimoghaddam, and S.J.Johnson, Grant-free non-orthogonal multiple access for IoT: Asurvey, IEEE Communications Surveys and Tutorials, 22(3),2020, 1805–1838.
  10. [10] A.C. Cirik, N.M. Balasubramanya, L. Lampe, G. Vos,and S. Bennett, Toward the standardization of grant-freeoperation and the associated NOMA strategies in 3GPP,IEEE Communications Standards Magazine, 3(4), 2019,60–66.
  11. [11] L. Liu and W. Yu, Massive connectivity with massive MIMO—Part I: Device activity detection and channel estimation,IEEE Transactions on Signal Processing, 66(11), 2018,2933–2946.
  12. [12] Y. Du, B. Dong, Z. Chen, X. Wang, Z. Liu, P. Gao,and S. Li, Efficient multi-user detection for uplink grant-free NOMA: Prior-information aided adaptive compressivesensing perspective, IEEE Journal on Selected Areas inCommunications, 35(12), 2017, 2812–2828.
  13. [13] Z. Gao, L. Dai, S. Han, I. Chih-Lin, Z. Wang, and L. Hanzo,Compressive sensing techniques for next-generation wirelesscommunications, IEEE Wireless Communications, 25(3), 2018,144–153.
  14. [14] L. Wu, Z. Wang, P. Sun, and Y. Yang, Temporal correlationenhanced sparse activity detection in MIMO enabled grant-freeNOMA, IEEE Transactions on Vehicular Technology, 25(3),2022, 2887–2899.
  15. [15] M.E. Davies and Y.C. Eldar, Rank awareness in joint sparserecovery, IEEE Transactions on Information Theory, 58(2),2012, 1135–1146.
  16. [16] Z. Chen, F. Sohrabi, and W. Yu, Sparse activity detection formassive connectivity, IEEE Transactions on Signal Processing,66(7), 2018, 1890–1904.
  17. [17] L. Liu, E.G. Larsson, W. Yu, P. Popovski, C. Stefanovic, andE. de Carvalho, Sparse signal processing for grant-free massiveconnectivity: A future paradigm for random access protocolsin the Internet of Things, IEEE Signal Processing Magazine,35(5), 2018, 88–99.
  18. [18] S.G. Mallat and Z. Zhang, Matching pursuits with time-frequency dictionaries, IEEE Transactions on Signal Process-ing, 41(12), 1993, 3397–3415.
  19. [19] H.F. Schepker, C. Bockelmann, and A. Dekorsy, Exploitingsparsity in channel and data estimation for sporadicmulti-user communication, Proc. Int. Symposium WirelessCommunication Systems, Ilmenau, 2013, 1–5.
  20. [20] R. Tibshirani, Regression shrinkage and selection via the lasso,The Journal of the Royal Statistical Society, 58(1), 1996,267–288.
  21. [21] J.A. Tropp, A.C. Gilbert, and M.J. Strauss, Algorithms forsimultaneous sparse approximation. Part I: Greedy pursuit,Signal Process, 86(3), 2006, 572–588.
  22. [22] Z. Gao, L. Dai, C. Qi, C. Yuen, and Z. Wang, Near-optimal signal detector based on structured compressive sensingfor massive SM-MIMO, IEEE Transactions on VehicularTechnology, 66(2), 2017, 1860–1865.
  23. [23] H. Lu, X. Long, and J. Lv, A fast algorithm for recoveryof jointly sparse vectors based on the alternating directionmethods, Proc. MLR Workshop and Conf., Fort Lauderdale,FL, 2011, 461–469.
  24. [24] S.F. Cotter, B.D. Rao, K. Engan, and K. Kreutz-Delgado,Sparse solutions to linear inverse problems with multiplemeasurement vectors, IEEE Transactions on Signal Processing,53(7), 2005, 2477–2488.
  25. [25] S. Rangan, A.K. Fletcher, V.K. Goyal, and P. Schniter, Hybridgeneralized approximate message passing with applications tostructured sparsity, Proc. IEEE Int. Symposium InformationTheory, Cambridge, MA, 2012, 1236–1240.
  26. [26] L. Liu and W. Yu, Massive connectivity with massive MIMO—Part I: Device activity detection and channel estimation,IEEE Transactions on Signal Processing, 66(11), 2018,2933–2946.
  27. [27] Y. Zhang, Q. Guo, Z. Wang, J. Xi, and N. Wu, Blocksparse Bayesian learning based joint user activity detectionand channel estimation for grant-free NOMA systems,IEEE Transactions on Vehicular Technology, 67(10), 2018,9631–9640.
  28. [28] P. Patcharamaneepakorn, S. Wu, C.-X. Wang; E.-H.M.Aggoune, M.M. Alwakeel, X. Ge, and M. Di Renzo,Spectral, energy, and economic efficiency of 5G multicellmassive MIMO systems with generalized spatial modulation,IEEE Transactions on Vehicular Technology, 65(12), 2016,9715–9731.
  29. [29] L. Xiao, Y. Xiao, C. Xu, X. Lei, P. Yang, S. Li, and L. Hanzo,Compressed-sensing assisted spatial multiplexing aided spatialmodulation, IEEE Transactions on Wireless Communications,17(2), 2018, 794–807.
  30. [30] Z. Gao, L. Dai, Z. Wang, S. Chen, and L. Hanzo, Compressive-sensing-based multiuser detector for the large-scale SM-MIMOuplink, IEEE Transactions on Vehicular Technology, 65(10),2016, 8725–8730.
  31. [31] Y.C. Eldar and H. Rauhut, Average case analysis ofmultichannel sparse recovery using convex relaxation,IEEE Transactions on Information Theory, 56(1), 2010,505–519.
  32. [32] L. Qiao, J. Zhang, Z. Gao, D. Zheng. Md. J. Hossain, Y. Gao,D. Wing Kwan Ng, and M. Di Renzo, Joint activity and blindinformation detection for UAV-assisted massive IoT access,IEEE Journal on Selected Areas in Communications, 40(5),2022, 1489–1508.
  33. [33] X. Zhang, Matrix analysis and applications, (Cambridge:Cambridge University Press, 2017).
  34. [34] P. Gao, Z. Liu, P. Xiao, C. Heng Foh, and J. Zhang, Low-complexity channel estimation and multi-user detection foruplink grant-free NOMA systems, IEEE CommunicationsLetters, 11(2), 2022, 263–267.
  35. [35] Y. Du, C. Cheng, B. Dong, Z. Chen, X. Wang, J. Fang, and S.Li, Block-sparsity-based multiuser detection for uplink grant-free NOMA, IEEE Transactions on Wireless Communications,17(12), 2018, 7894–7909.
  36. [36] N.Y. Yu, Multiuser activity and data detection via sparsity-blind greedy recovery for uplink grant-free NOMA, IEEECommunications Letters, 23(11), 2019, 2082–2085.
  37. [37] Z. Gao, L. Dai, Z. Wang, S. Chen, and L. Hanzo, Compressive-sensing-based multiuser detector for the large-scale SM-MIMOuplink, IEEE Transactions on Vehicular Technology, 65(10),2016, 8725–8730.
  38. [38] M. Ke, Z. Gao, Y. Wu, X. Gao, and R. Schober, Compressivesensing-based adaptive active user detection and channelestimation: Massive access meets massive MIMO, IEEETransactions on Signal Processing, 68(2), 2020, 764–779.
  39. [39] N.Y. Yu, Binary golay spreading sequences and reed-mullercodes for uplink grant-free NOMA, IEEE Transactions onCommunications, 69(1), 2021, 276–290.

Important Links:

Go Back