LIGHTWEIGHT MESH CRACK DETECTION ALGORITHM BASED ON EFFICIENT ATTENTION MECHANISM, 170-179.

Die Hang, Jianxi Yang, Shixin Jiang, Hao Li, Xiaoxue Zou, Chuncheng Tang, and Die Liu

References

  1. [1] C. Peng, Adaptive threshold pavement crack detection algorithmbased on frit and random structural forest, M.S. thesis,Shandong University, Shandong, China, 2021.
  2. [2] Z.Y. Dan, F.L. Liu, and D.F. Gong, Smoothing filteringdetection algorithm based on tail information in differentialhistograms, Computer Science, 48(11), 2021, 234–241.
  3. [3] X. Wang, Wavelet transform-based directional componentreconstruction for highway crack identification in com-plex environments, Shanxi Traffic Technology, 4, 2021,52–55.
  4. [4] Y. Zhou, Z. Chen, Z. Qian, J. Hou, and D. Hu, Safety analysis ofhollow plate girder bridge based on routine detection indexes,International Journal of Robotics and Automation, 36, 2021,1–10.
  5. [5] L. Ali, N.K. Valappil, D.N.A. Kareem, M.J. John, andH.A. Jassmi, Pavement crack detection and localization usingconvolutional neural networks (CNNs), Proc. Int. Conf.Digitization (ICD), Sharjah, 2019, 217–221.
  6. [6] K. Jang, N. Kim, and Y.-K. An, Deep learning-basedautonomous concrete crack evaluation through hybrid imagescanning, Structural Health Monitoring, 18(5/6), 2019, 1722–1737.
  7. [7] Q. Zou, Z. Zhang, Q.Q. Li, X.B. Qi, and Q. Wang, Deep-Crack: Learning hierarchical convolutional features for crackdetection, IEEE Transactions Image Processing, 28(3), 2019,1498–1512.
  8. [8] Y. Liu, J. Yao, X. Lu, R. Xie, and L. Li, DeepCrack:A deep hierarchical feature learning architecture for cracksegmentation, Neurocomputing, 338(3), 2019, 139–153.
  9. [9] J. Xin, H. Zhang, J. Zhou, X. Li, and H. Ma, Damageidentification of bridge system based on a hybrid algorithm,International Journal of Robotics and Automation, 34(2), 2019,104–111.
  10. [10] S. Zhou, Y. Jiang, X. Li, and Q. Wu, Vibration-baseddamage identification of reinforced concrete arch bridges usingKALMAN-ARMA-GARCH model, International Journal ofRobotics and Automation, 36, 2021, 1–17.
  11. [11] H. Zhang, J. Zhou, R. Zhao, L. Liao, M. Yang, and R. Xia,Experimental study on detection of rebar corrosion in concretebased on metal magnetic memory, International Journal ofRobotics and Automation, 32, 2017, 530–537.
  12. [12] Z. Gai, D. Liu, F. Chang, and N. Li, Abnormal crowd behaviourdetection based on deep learning and sparse representation,International Journal of Robotics and Automation, 35(4), 2020,322–331.
  13. [13] H. Liu, S. Ren, D. Ren, and X. Liu, Automatic extractionof orchards from remote sensing image based on categoryattention mechanism, International Journal of Robotics andAutomation, 37(1), 2022, 20–28.
  14. [14] Y. Feng, T. Tang, S. Chen, and Y. Wu, Automated defectdetection based on transfer learning and deep convolutiongenerative adversarial networks, International Journal ofRobotics and Automation, 36(6), 2021, 471–478.
  15. [15] P. Liu, C. Song, J. Li, S.X. Yang, X. Chen, C. Liu, and Q. Fu,Detection of transmission line against external force damagebased on improved YOLOv3, International Journal of Roboticsand Automation, 35(6), 2020, 460–468.177
  16. [16] G. Yao, F.-J. Wei, J.-Y. Qian, and Z.-G. Wu, Crackdetection of concrete surface based on \newline convolutionalneural networks, Proc. Int. Conf. on Machine Learning andCybernetics (ICMLC), Chengdu, 2018, 246–250.
  17. [17] Z.Q. Liu, Y.W. Cao, Y.Z. Wang, and W. Wang, Computervision-based concrete crack detection using U-Net fullyconvolutional networks, Automation in Construction, 104,2019, 129–139.
  18. [18] O. Ronneberger, P. Fischer, and T. Brox, U-Net: Convolutionalnetworks for biomedical image segmentation, Proc. Int.Conf. on Medical Image Computing and Computer-AssistedIntervention, 2015, 234–241.
  19. [19] Q. Wang, B.G. Wu, P.F. Zhu, P.H. Li, W. Zuo, and Q.H. Hu,ECA-Net: Efficient channel attention for deep convolutionalneural networks, Proc. IEEE/CVF Conf. Computer Visionand Pattern Recognition (CVPR), Seattle, WA, 2020,11531–11539.
  20. [20] J. Yang, J. Cheng, J. Wang, and Y. Feng, Automaticdeformation monitoring for large span bridge based on multi-constellation BDS and GPS system, International Journal ofRobotics and Automation, 33(5), 2018, 534–541.
  21. [21] H. Xu, X. Su, Y. Wang, H. Cai, K. Cui, and X. Chen, Automaticbridge crack detection using a convolutional neural network,Applied Sciences, 9(14), 2019, 2867.
  22. [22] L.F. Li, W.F. Ma, L. Li, and C. Lu, Research on detectionalgorithm for bridge cracks based on deep learning, ActaAutomatica Sinica, 45(9), 2019, 1727–1742.
  23. [23] J. Hu, L. Shen, S. Albanie, G. Sun, and E. Wu,Squeeze-and-excitation networks, IEEE Transactions onPattern Analysis and Machine Intelligence, 42(8), 2020,2011–2023.
  24. [24] Y. Jiang, H. Yao, C. Wu, and W. Liu, A multi-scale residualattention network for retinal vessel segmentation, Symmetry,13(1), 2020, 24.
  25. [25] J.-M. Guo, H. Markoni, and J.-D. Lee, BARNet: Boundaryaware refinement network for crack detection, IEEE Trans-actions on Intelligent Transportation Systems, 23(7), 2022,7343–7358.
  26. [26] K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learningfor image recognition, Proc. IEEE Conf. Computer Vision andPattern Recognition, Las Vegas, NV, 2016, 770–778.
  27. [27] G. Huang, Z. Liu, L. Van Der Maaten, and K.Q. Weinberger,Densely connected convolutional networks, Proc. IEEE Conf.Computer Vision and Pattern Recognition, Honolulu, HI, 2017,4700–4708.
  28. [28] C. Szegedy, W. Liu, Y.Q. Jia, P. Sermanet, S. Reed, D.Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich, Goingdeeper with convolutions, Proc. IEEE Conf. Computer Visionand Pattern Recognition, Boston, MA, 2015, 1–9.
  29. [29] B. Wang, S. Qiu, and H. He, Dual encoding U-Net for retinalvessel segmentation, Proc. Int. Conf. Medical Image Computingand Computer-Assisted Intervention, Shenzhen, 2019, 84–92.
  30. [30] Z. Fang, Y. Chen, D. Nie, W. Lin, and D. Shen,RCA-U-Net: Residual channel attention U-Net for fast tissuequantification in magnetic resonance fingerprinting, Proc. Int.Conf. on Medical Image Computing and Computer-AssistedIntervention, 2019, 101–109.
  31. [31] S. Ren, X. Liu, H. Liu, and L. Wang, Cultivated landsegmentation of remote sensing image based on PSPNet ofattention mechanism, International Journal of Robotics andAutomation, 37(1), 2022, 11–19.
  32. [32] H. Xu, X. Su, Y. Wang, H. Cai, K. Cui, and X. Chen, Automaticbridge crack detection using a convolutional neural network,Applied Sciences, 9(14), 2019, 2867.
  33. [33] H. Liu, S. Ren, D. Ren, and X. Liu. Automatic extractionof orchards from remote sensing image based on categoryattention mechanism, International Journal of Robotics andAutomation, 37(1), 2022, 20–28.
  34. [34] J. Long, E. Shelhamer, and T. Darrel, Fully convolutionalnetworks for semantic segmentation, IEEE Transactions onPattern Analysis and Machine Intelligence, 39(4), 2017,640–651.
  35. [35] B. Vijay, K. Alex, and C. Roberto, SegNet: A deep convolutionalencoder–decoder architecture for image segmentation, IEEETransactions on Pattern Analysis and Machine Intelligence,39(12), 2017, 2481–2495.
  36. [36] Q. Jin, Z. Meng, C. Sun, H. Cui, and R. Su, RA-UNet: A hybriddeep attention-aware network to extract liver and tumor inCT scans, Frontiers in Bioengineering and Biotechnology, 8,2020, 1471.

Important Links:

Go Back