Chaochen Gu, Qi Feng, Changsheng Lu, Changjian Gu, Xunjin Wu, and Kaijie Wu


  1. [1] I. Daniyan, K. Mpofu, F. Ale, and M. Oyesola, Design andsimulation of a dual-arm robot for manufacturing operationsin the railcar industry, International Journal of Robotics andAutomation, 36(6), 2021, 434–447.
  2. [2] L. Kong, W. He, Y. Dong, L. Cheng, C. Yang, and Z. Li,Asymmetric bounded neural control for an uncertain robotby state feedback and output feedback, IEEE Transactionson Systems, Man, and Cybernetics: Systems, 51(3), 2019,1735–1746.
  3. [3] X. Yu, W. He, H. Li, and J. Sun, Adaptive fuzzy full-state and output-feedback control for uncertain robots withoutput constraint, IEEE Transactions on Systems, Man, andCybernetics: Systems, 51(11), 2020, 6994–7007.
  4. [4] W. He, H. Gao, C. Zhou, C. Yang, and Z. Li, Reinforcementlearning control of a flexible two-link manipulator: Anexperimental investigation, IEEE Transactions on Systems,Man, and Cybernetics: Systems, 51(12), 2021, 7326–7336.
  5. [5] S. Chen, Y. Li, and N.M. Kwok, Active vision in roboticsystems: A survey of recent developments, The InternationalJournal of Robotics Research, 30(11), 2011, 1343–1377.
  6. [6] D. Ognibene and G. Baldassare, Ecological active vision: Fourbioinspired principles to integrate bottom–up and adaptivetop–down attention tested with a simple camera-arm robot,IEEE Transactions on Autonomous Mental Development, 7(1),2015, 3–25.
  7. [7] H. Zheng, C. Sun, and H. Yin, A novel deep model withstructure optimization for scene understanding, InternationalJournal of Robotics and Automation, 36(6), 2021, 392–401.
  8. [8] V. Lepetit, F. Moreno-Noguer, and P. Fua, EPnP: An accurateO(n) solution to the PnP problem, International Journal ofComputer Vision, 81(2), 2009, 155–166.
  9. [9] C. Lu, S. Xia, M. Shao, and Y. Fu, Arc-support line segmentsrevisited: An efficient high-quality ellipse detection, IEEETransactions on Image Processing, 29, 2019, 768–781.
  10. [10] C. Lu, S. Xia, W. Huang, M. Shao, and Y. Fu, Circle detectionby arc-support line segments, Proc. IEEE Conf. on ImageProcessing (ICIP), Beijing, 2017, 76–80.
  11. [11] R.B. Rusu, N. Blodow, Z.C. Marton, and M. Beetz, Aligningpoint cloud views using persistent feature histograms, Proc.IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, Nice,2008, 3384–3391.293
  12. [12] R.B. Rusu, N. Blodow, and M. Beetz, Fast point featurehistograms (FPFH) for 3D registration, Proc. IEEE Conf. onRobotics and Automation, Kobe, 2009, 3212–3217.
  13. [13] A.E. Johnson, Spin-images: A representation for 3-D surfacematching, Technical Report CMU-RI-TR-97-47, RoboticsInstitute, Carnegie Mellon University, Pittsburgh, PA, 1997.
  14. [14] S. Salti, F. Tombari, and L. Di Stefano, SHOT: Uniquesignatures of histograms for surface and texture description,Computer Vision and Image Understanding, 125, 251–264,2014.
  15. [15] Z. Zhang, Iterative point matching for registration of free-formcurves and surfaces, International Journal of Computer Vision,13(2), 1994, 119–152.
  16. [16] Y. Chen and G. Medioni, Object modelling by registration ofmultiple range images, Image and Vision Computing, 10(3),1992, 145–155.
  17. [17] P.J. Besl and N.D. McKay, Method for registration of 3-Dshapes, Proc. Sensor Fusion IV: Control Paradigms and DataStructures, Boston, MA, 1992, 586–606.
  18. [18] S. Suwajanakorn, N. Snavely, J.J. Tompson, and M. Norouzi,Discovery of latent 3D keypoints via end-to-end geometricreasoning, in Advances in Neural Information ProcessingSystems, 31. (Red Hook, NY: Curran, 2018).
  19. [19] G. Pavlakos, X. Zhou, A. Chan, K.G. Derpanis, and K.Daniilidis, 6-DoF object pose from semantic keypoints, Proc.IEEE Conf. on Robotics and Automation (ICRA), Singapore,2017, 2011–2018.
  20. [20] C. Lu and P. Koniusz, Few-shot keypoint detection withuncertainty learning for unseen species, Proc. IEEE/CVF Conf.on Computer Vision and Pattern Recognition (CVPR), NewOrleans, LA, 2022, 19416–19426.
  21. [21] S. Hinterstoisser, V. Lepetit, S. Ilic, S. Holzer, G. Bradski, K.Konolige, and N. Navab, Model based training, detection andpose estimation of texture-less 3D objects in heavily clutteredscenes, Proc. Asian Conf. on Computer Vision, Berlin, 2012,548–562.
  22. [22] A. Tejani, D. Tang, R. Kouskouridas, and T.-K. Kim, Latent-class hough forests for 3D object detection and pose estimation,Proc. European Conf. on Computer Vision, Cham, 2014,462–477.
  23. [23] R. Rios-Cabrera and T. Tuytelaars, Discriminatively trainedtemplates for 3D object detection: A real time scalableapproach, Proc. IEEE Conf. on Computer Vision (ICCV),Sydney, NSW, 2013, 2048–2055.
  24. [24] Y. Liu, J. Zhang, C. Wang, and L. Wang, Multiple HOGtemplates for gait recognition, Proc. 21st Conf. on PatternRecognition (ICPR), Tsukuba, 2012, 2930–2933.
  25. [25] R.J. L´opez-Sastre, T. Tuytelaars, and S. Savarese, Deformablepart models revisited: A performance evaluation for objectcategory pose estimation, Proc. IEEE Conf. on ComputerVision Workshops (ICCV Workshops), Barcelona, 2011,1052–1059.
  26. [26] C. Gu and X. Ren, Discriminative mixture-of-templates forviewpoint classification, Proc. European Conf. on ComputerVision, Berlin, 2010, 408–421.
  27. [27] B. Pepik, M. Stark, P. Gehler, and B. Schiele, Teaching 3Dgeometry to deformable part models, Proc. IEEE Conf. onComputer Vision and Pattern Recognition, Providence, RI,2012, 3362–3369.
  28. [28] D.G. Lowe, Object recognition from local scale-invariantfeatures, Proc. 7th IEEE Conf. on Computer Vision, 2.Kerkyra,1999, 1150–1157.
  29. [29] H. Bay, T. Tuytelaars, and L.V. Gool, SURF: Speeded uprobust features, Proc. European Conf. on Computer Vision,Berlin, 2006, 404–417.
  30. [30] M.A. Fischler and R.C. Bolles, Random sample consensus: Aparadigm for model fitting with applications to image analysisand automated cartography, Communications of the ACM,24(6), 1981, 381–395.
  31. [31] Q. Feng, C. Gu, J. Qin, and R. Xu, A depthwise separableconvolution based 6D pose estimation network by efficient 2D–3D feature fusion, Proc. IEEE Conf. on Real-Time Computingand Robotics (RCAR), Xining, 2021, 381–386.
  32. [32] J.M. Wong, V. Kee, T. Le, S. Wagner, G.-L. Mariottini,A. Schneider, L. Hamilton, R. Chipalkatty, M. Hebert,D.M.S. Johnson, J. Wu, B. Zhou, and A. Torralba, SegICP:Integrated deep semantic segmentation and pose estimation,Proc. IEEE/RSJ Conf. on Intelligent Robots and Systems(IROS), Vancouver, BC, 2017, 5784–5789.
  33. [33] A. Zeng, K.-T. Yu, S. Song, D. Suo, E. Walker, A. Rodriguez,and J. Xiao, Multi-view self-supervised deep learning for 6Dpose estimation in the Amazon picking challenge, Proc. IEEEConf. on Robotics and Automation (ICRA), Singapore, 2017,1386–1383.
  34. [34] A. Doumanoglou, R. Kouskouridas, S. Malassiotis, and T.-K.Kim, Recovering 6D object pose and predicting next-best-viewin the crowd, Proc. IEEE Conf. on Computer Vision andPattern Recognition (CVPR), Las Vegas, NV, 2016, 3583–3592.
  35. [35] V. Balntas, A. Doumanoglou, C. Sahin, J. Sock, R.Kouskouridas, and T.-K. Kim, Pose guided RGBD featurelearning for 3D object pose estimation, Proc. IEEE Conf. onComputer Vision (ICCV), Venice, 2017, 3856–3864.
  36. [36] M. Rad and V. Lepetit, BB8: A scalable, accurate, robustto partial occlusion method for predicting the 3D poses ofchallenging objects without using depth, Proc. IEEE Conf. onComputer Vision (ICCV), Venice, 2017, 3828–3836.
  37. [37] W. Kehl, F. Manhardt, F. Tombari, S. Ilic, and N. Navab, SSD-6D: Making RGB-based 3D detection and 6D pose estimationgreat again, Proc. IEEE Conf. on Computer Vision (ICCV),Venice, 2017, 1521–1529.
  38. [38] C. Wang, D. Xu, Y. Zhu, R. Mart´ın-Mart´ın, C. Lu, L. Fei-Fei,and S. Savarese, DenseFusion: 6D object pose estimation byiterative dense fusion, Proc. IEEE/CVF Conf. on ComputerVision and Pattern Recognition (CVPR), Long Beach, CA,2019, 3343–3352.
  39. [39] Y. Xiang, T. Schmidt, V. Narayanan, and D. Fox, PoseCNN:A convolutional neural network for 6D object pose estimationin cluttered scenes, arXiv preprint arXiv:1711.00199, 2017.
  40. [40] Y. Feng, T. Tang, S. Chen, and Y. Wu, Automated defectdetection based on transfer learning and deep convolutiongenerative adversarial networks, International Journal ofRobotics and Automation, 36(6), 2021, 471–478.
  41. [41] C. Lu, C. Gu, K. Wu, S. Xia, H. Wang, and X. Guan, Deeptransfer neural network using hybrid representations of domaindiscrepancy, Neurocomputing, 409, 2020, 60–73.
  42. [42] X. Wu, C. Lu, C. Gu, K. Wu, and S. Zhu, Domain adaptation forviewpoint estimation with image generation, Proc. Int. Conf.on Control, Automation and Information Sciences (ICCAIS),Xi’an, 2021, 341–346.
  43. [43] E. Tzeng, J. Hoffman, N. Zhang, K. Saenko, and T. Darrell,Deep domain confusion: Maximizing for domain invariance,arXiv preprint arXiv:1412.3474, 2014.
  44. [44] M. Long, Y. Cao, J. Wang, and M. Jordan, Learningtransferable features with deep adaptation networks, Proc.32nd Conf. on Machine Learning, Lille, 2015, 97–105.
  45. [45] M. Long, H. Zhu, J. Wang, and M.I. Jordan, Deep transferlearning with joint adaptation networks, Proc. 34th Int. Conf.on Machine Learning, Sydney, NSW, 2017, 2208–2217.
  46. [46] C. Lu, H. Wang, C. Gu, K. Wu, and X. Guan, Viewpointestimation for workpieces with deep transfer learning from coldto hot, Proc. Int. Conf. on Neural Information Processing,Cham, 2018, 21–32.
  47. [47] L.A. Gatys, A.S. Ecker, and M. Bethge, Image style transferusing convolutional neural networks, Proc. IEEE Conf. onComputer Vision and Pattern Recognition (CVPR), Las Vegas,NV, 2016, 2414–2423.
  48. [48] A. Shrivastava, T. Pfister, O. Tuzel, J. Susskind, W. Wang, andR. Webb, Learning from simulated and unsupervised imagesthrough adversarial training, Proc. IEEE Conf. on ComputerVision and Pattern Recognition (CVPR), Honolulu, HI, 2017,2107–2116.
  49. [49] S. Ren, K. He, R. Girshick, and J. Sun, Faster R-CNN: Towardsreal-time object detection with region proposal networks, inAdvances in Neural Information Processing Systems, 28. (RedHook, NY: Curran, 2015).
  50. [50] J. Redmon, and A. Farhadi, YOLOv3: An incrementalimprovement, arXiv preprint arXiv:1804.02767, 2018.
  51. [51] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Doll´ar, Focal lossfor dense object detection, Proc. IEEE Int.Conf. on ComputerVision (ICCV), Venice, 2017, 2980–2988.294
  52. [52] K. Simonyan and A. Zisserman, Very deep convolutionalnetworks for large-scale image recognition, arXiv preprintarXiv:1409.1556, 2014.
  53. [53] O. Ronneberger, P. Fischer, and T. Brox, U-Net: Convolutionalnetworks for biomedical image segmentation, Proc. Int.Conf. on Medical Image Computing and Computer-AssistedIntervention, Cham, 2015, 234–241.
  54. [54] J. Canny, A computational approach to edge detection, IEEETransactions on Pattern Analysis and Machine Intelligence,PAMI-8(6), 1986, 679–698.
  55. [55] R.O. Duda and P.E. Hart, Use of the hough transformationto detect lines and curves in pictures, Communications of theACM, 15(1), 1972, 11–15.
  56. [56] J. Jing, S. Liu, G. Wang, W. Zhang, and C. Sun, Recentadvances on image edge detection: A comprehensive review,Neurocomputing, 503, 2022, 259–271.
  57. [57] M. Munaro, S. Ghidoni, D.T. Dizmen, and E. Menegatti,A feature-based approach to people re-identification usingskeleton keypoints, Proc. IEEE Int. Conf. on Robotics andAutomation (ICRA), Hong Kong, 2014, 5644–5651.
  58. [58] S. Ghidoni and M. Munaro, A multi-viewpoint feature-basedre-identification system driven by skeleton keypoints, Roboticsand Autonomous Systems, 90, 2017, 45–54.
  59. [59] D. Li and K.-M. Lam, Design and learn distinctive featuresfrom pore-scale facial keypoints, Pattern Recognition, 48(3),2015, 732–745.
  60. [60] A. Mahendran and A. Vedaldi, Understanding deep imagerepresentations by inverting them, Proc. IEEE Conf. onComputer Vision and Pattern Recognition (CVPR), Boston,MA, 2015, 5188–5196.

Important Links:

Go Back