Jing Lei, Jia-Qing Song, Haiping Du, and Ming Chen


  1. [1] M. Li, N. Xi, Y. Wang, and L. Liu, Progress in nanoroboticsfor advancing biomedicine, IEEE Transactions on BiomedicalEngineering, 68(1), 2020, 130–147.
  2. [2] Z. Wu, Y. Chen, D. Mukasa, O.S. Pak, and W. Gao, Medicalmicro/nanorobots in complex media, Chemical Society Reviews,49(22), 2020, 8088–8112.
  3. [3] H. Zhou, C.C. Mayorga-Martinez, S. Pan´e, L. Zhang, andM. Pumera, Magnetically driven micro and nanorobots,Chemical Reviews, 121(8), 2021, 4999–5041.
  4. [4] A. Denasi and S. Misra, A robust controller for micro-sizedagents: The prescribed performance approach, Proc. IEEE Int.Conf. on Manipulation, Automation and Robotics at SmallScales, Paris, 2016, 1–6.
  5. [5] C. Choubey and J. Ohri, GWO-based tuning of LQR-PID controller for 3-DOF parallel manipulator, InternationalJournal of Robotics and Automation, 37(3), 2022, 248–256.doi: 10.2316/J.2021.206-0571.
  6. [6] H. Tourajizadeh and O. Gholami, Closed loop nonlinearoptimal control of a loop 3PRS parallel robot, InternationalJournal of Robotics and Automation, 36(3), 2021, 128–132.doi: 10.2316/J.2021.206-0401.
  7. [7] L. Arcese, M. Fruchard, F. Beyeler, A. Ferreira, and B.J. Nelson,Adaptive backstepping and MEMS force sensor for anMRI-guided microrobot in the vasculature, Proc. IEEE Int.Conf. on Robotics and Automation, Shanghai, 2011, 4121–4126.
  8. [8] L. Sadelli, M. Fruchard, and A. Ferreira, Observer-basedcontroller for microrobot in pulsatile blood flow, Proc. 53rdIEEE Conf. on Decision and Control, Los Angeles, 2014,6993–6998.
  9. [9] L. Arcese, A. Cherry, M. Fruchard, and A. Ferreira, Highgain observer for backstepping control of a MRI-guidedtherapeutic microrobot in blood vessels, Proc. IEEE Int. Conf.on Biomedical Robotics and Biomechatronics, Tokyo, 2010,349–354.
  10. [10] L. Arcese, M. Fruchard, and A. Ferreira, Endovascular magnet-ically guided robots: Navigation modeling and optimization,IEEE Transactions on Biomedical Engineering, 59(4), 2012,977–987.
  11. [11] V.T. La, S. Huang, T.D. Tran, and D.H. Vu, Adaptive robustbackstepping sliding mode control of a DE-ICING industrialrobot manipulator using neural network with dead zone,International Journal of Robotics and Automation, 36(3), 2021,154–169. doi: 10.2316/J.2021.206-0465.
  12. [12] J. Lei, Semiglobal stabilisation for time-delay nonlinear systemsusing high-gain observers with an upper bound and withouta lower bound on ε, International Journal of Control, 91(8),2018, 1801–1817.
  13. [13] J. Lei and H.K. Khalil, High-gain-predictor-based outputfeedback control for time-delay nonlinear systems, Automatica,7, 2016, 324–333.
  14. [14] C. Meng, T. Wang, W. Chou, S. Luan, Y. Zhang, and Z. Tian,Remote surgery case: Robot-assisted teleneurosurgery, Proc.IEEE Int. Conf. on Robotics and Automation, New Orleans,LA, 2004, 819–823.
  15. [15] Z. Juanping and G. Xianwen, Time-delay analysis andestimation of Internet-based robot teleoperation system, Proc.IEEE Chinese Control and Decision Conf., Guilin, 2009, 4643–4646.
  16. [16] A. Ghanbari, P.H. Chang, B.J. Nelson, and H. Choi, Magneticactuation of a cylindrical microrobot using time-delay-estimation closed-loop control: Modeling and experiments,Smart Materials and Structures, 23(3), 2014, 035013.265

Important Links:

Go Back