TRAJECTORY TRACKING OF NONHOLONOMIC CONSTRAINT MOBILE ROBOT BASED ON ADRC, 1-9. SI

Cuiping Pu, Jie Ren, Youwen Zhai, and Yuhang Zhang

References

  1. [1] L. Wang and H. Wei, Avoiding non-Manhattan obstaclesbased on projection of spatial corners in indoor environment,IEEE/CAA Journal of Automatica Sinica, 7(4), 2020,1190–1200.
  2. [2] S. Kousik, S. Vaskov, F. Bu, M. Johnson-Roberson, and R.Vasudevan, Bridging the gap between safety and real-timeperformance in receding-horizon trajectory design for mobilerobots, The International Journal of Robotics Research, 39(12),2020, 1419–1469.
  3. [3] L. Ding, L. Huang, S. Li, H. Gao, H. Deng, Y. Li, andG. Liu, Definition and application of variable resistancecoefficient for wheeled mobile robots on deformable terrain,IEEE Transactions on Robotics, 36(3), 2020, 894–909.
  4. [4] G. Freudenthaler and T. Meurer, PDE-based multi-agentformation control using flatness and backstepping: Analysis,design and robot experiments, Automatica, 115, 2020, 108897.7
  5. [5] Y. Kantaros, M. Guo, and M.M. Zavlanos, Temporal logic taskplanning and intermittent connectivity control of mobile robotnetworks, IEEE Transactions on Automatic Control, 64(10),2019, 4105–4120.
  6. [6] H. Ye and S. Wang, Trajectory tracking control for non-holonomic wheeled mobile robots with external disturbancesand parameter uncertainties, International Journal of ControlAutomation and Systems, 18(7), 2020, 3015–3022.
  7. [7] J.-Y. Zhai and Z.-B. Song, Adaptive sliding mode trajectorytracking control for wheeled mobile robots, InternationalJournal of Control, 92(10), 2019, 2255–2262.
  8. [8] S. Li, L. Ding, H. Gao, C. Chen, Z. Liu, and Z. Deng,Adaptive neural network tracking control-based reinforcementlearning for wheeled mobile robots with skidding and slipping,Neurocomputing, 283, 2018, 20–30.
  9. [9] N. Zerari, M. Chemachema, and N. Essounbouli, Adaptiveneural network control for a class of MIMO non-affineuncertain systems with input dead-zone nonlinearity andexternal disturbance, International Journal of Systems Controland Communications, 11(2), 2020, 142-160.
  10. [10] H. Wang, Y. Pan, S. Li, and H. Yu, Robust sliding modecontrol for robots driven by compliant actuators, IEEETransactions on Control Systems Technology, 27(3), 2019,1259–1266.
  11. [11] J. Sun, J. Yang, S. Li, and Z. Zeng, Predictor-based periodicevent-triggered control for dual-rate networked control systemswith disturbances, IEEE Transactions on Cybernetics, 52(8),2022, 8179–8190.
  12. [12] J. Wang, L. Zhao, and L. Yu, Adaptive terminal slidingmode control for magnetic levitation systems with enhanceddisturbance compensation, IEEE Transactions on IndustrialElectronics, 68(1), 2021, 756–766.
  13. [13] Y.P. Patil and H.G. Patel, Sliding mode control design fornonlinear perturbed systems for tracking performance, Inter-national Journal of Systems, Control and Communications,12(4), 2021, 364–379.
  14. [14] S. Gholipour, S.J. Kazemitabar, M. Alizadeh, and S. Minagar,Fractional dynamic sliding mode control for non-identicaluncertain fractional chaotic systems, International Journalof Systems, Control and Communications, 12(2), 2021,132–147.
  15. [15] S. Wang and J. Zhai, A trajectory tracking method for wheeledmobile robots based on disturbance observer, InternationalJournal of Control, Automation and System, 18, 2020,2165–2169.
  16. [16] A. Maddi, A. Guessoum, and D. Berkani, A new design ofadaptive model following control system for lateral motionof aircraft, International Journal of Systems Control andCommunications, 11(4), 2020, 364–380.
  17. [17] S. Baghla and S. Bansal, An adaptive algorithm forenergy efficient network selection in heterogeneous networks,International Journal of Systems Control and Communications,11(3), 2020, 227–241.
  18. [18] J.Q. Han, ADRC and its applications, Control and Decision,13(1), 1998, 19–23.
  19. [19] J.Q. Han, An extended state observer for a class of uncertainobjects, Control and Decision, 10(1), 1995. 85–88.
  20. [20] J.Q. Han, From PID to active disturbance rejection control,IEEE Transactions on Industrial Electronics, 56(3), 2009,900–906.
  21. [21] J.Q. Han, ADRC Technique - A Control Technique thatEstimates and Compensates for Uncertainties. (China: RelaxNational Defense Industry Press, 2008).
  22. [22] G. Wang, R. Liu, N. Zhao, D. Ding, and D. Xu, Enhancedlinear ADRC strategy for HF pulse voltage signal injection-based sensorless IPMSM drives, IEEE Transactions on PowerElectronics, 34(1), 2019, 514–525.
  23. [23] P. Li, G. Zhu, and M. Zhang, Linear active disturbancerejection control for servo motor systems with input delay viainternal model control rules, IEEE Transactions on IndustrialElectronics, 68(2), 2021, 1077–1086.
  24. [24] J. Su, W. Qiu, H. Ma, and P.-Y. Woo, Calibration-freerobotic eye-hand coordination based on an auto disturbance-rejection controller, IEEE Transactions on Robotics, 20(5),2004, 899–907.
  25. [25] J. Huang and Y. Cen, Research on variable mass control ofseries manipulator based on linear active disturbance rejectioncontrol, Measurement and Control, 53(7-8), 2020, 1194–1202.
  26. [26] K. Zhao, J. Zhang, D. Ma, and Y. Xia, Composite disturbancerejection attitude control for quadrotor with unknowndisturbance, IEEE Transactions on Industrial Electronics,67(8), 2019, 6894–6903.
  27. [27] K. Ni, Z. Wang, Q. Zhang, and S. Han, Antiwindup spinningguidance for fixed-trim entry vehicles by active disturbancerejection control, Journal of Spacecraft and Rockets, 56(4),2019, 1092–1106.
  28. [28] H. Jiang, Q. Chang, Y. Wang, and X. Xie, Optimization ofthe active disturbance rejection control of a four-rotor aircraft,Mechatronic Systems and Control, 48(2), 2020, 50.
  29. [29] S.A. Suhail, M.A. Bazaz, and S. Hussain, Linear activedisturbance rejection control with a higher order sliding modeobserver applied to a cart inverted pendulum, MechatronicSystems and Control, 49(4), 2021, 49.
  30. [30] S. Zhuo, A. Gaillard, L. Guo, L. Xu, D. Paire, and F. Gao, Activedisturbance rejection voltage control of a floating interleavedDC–DC boost converter with switch fault consideration, IEEETransactions on Power Electronics, 34(12), 2019, 12396–12406.
  31. [31] S. Wang, S. Li, R. Gu, L. Ma, and M. Li, Adaptive slidingmode based active disturbance rejection control method for adirect-driven wind power conversion system, The Journal ofEngineering, 2019(22), 2019, 8365–8369.
  32. [32] Z. Wu, D. Li, Y. Xue, and Y. Chen, Gain scheduling designbased on active disturbance rejection control for thermal powerplant under full operating conditions, Energy, 185, 2019, 744–762.
  33. [33] S. Xingling and W. Honglun, Back-stepping active disturbancerejection control design for integrated missile guidance andcontrol system via reduced-order ESO, ISA Transactions, 57,2015, 10–22.
  34. [34] J.H. Wang, Y.W. Cai, L. Cheng, Y. Li, C.J. Xin, W.Q. Xie, andG.J. Tang, Active disturbance rejection guidance and controlscheme for homing missiles with impact angle constraints,Proceedings of the Institution of Mechanical Engineers, PartG: Journal of Aerospace Engineering, 233(3), 2019, 1133–1146.
  35. [35] Y. Huang and W. Xue, Active disturbance rejection control:Methodology and theoretical analysis, ISA Transactions, 53(4),2014, 963–976.
  36. [36] W. Xue and Y. Huang, Tuning of sampled-data ADRC fornonlinear uncertain systems, Journal of Systems Science andComplexity, 29(5), 2016, 1187–1211.
  37. [37] S. Chen and Z. Chen, On active disturbance rejection controlfor a class of uncertain systems with measurement uncertainty,IEEE Transactions on Industrial Electronics, 68(2), 2021,1475–1485.
  38. [38] A.J. Humaidi, H.M. Badr, and A.H. Hameed, PSO-based activedisturbance rejection control for position control of magneticlevitation system, Proc. 5th Int. Conf. on Control, Decisionand Information Technologies (CoDIT), Thessaloniki, 2018,922–928.
  39. [39] M. Li, J. Zhao, Y. Hu, and Z. Wang, Active disturbancerejection position servo control of PMSLM based on reduced-order extended state observer, Chinese Journal of ElectricalEngineering, 6(2), 2020, 30–41.
  40. [40] A.J. Humaidi and H.M. Badir, Linear and nonlinearactive rejection controllers for single-link flexible joint robotmanipulator based on PSO tuner, Journal of EngineeringScience and Technology Review, 13(6), 2018, 2272–2278.
  41. [41] N.A. Alawad, A.J. Humaidi, and A.S. Al-Araji, Improved activedisturbance rejection control for the knee joint motion model,Mathematical Modelling of Engineering Problems, 9(2), 2022,477–483.
  42. [42] D. Soudbakhsh and A. Eskandarian, Comparison of linear andnon-linear controllers for active steering of vehicles in evasivemanoeuvres, Proceedings of the Institution of MechanicalEngineers, Part I: Journal of Systems and Control Engineering,226(12), 2012, 215–232.
  43. [43] H. Chen, C. Wang, B. Zhang, and D. Zhang, Saturated trackingcontrol for nonholonomic mobile robots with dynamic feedback,Transactions of the Institute of Measurement and Control,35(2), 2013, 105–116.8

Important Links:

Go Back