FEASIBLE AND OPTIMAL TRAJECTORIES GENERATION FOR AUTONOMOUS DRIVING VEHICLES, 11-24.

Vu Trieu Minh, Reza Moezzi, Jindrich Cyrus, and Jaroslav Hlava

References

  1. [1] V.T. Minh, Advanced Vehicle Dynamics. (Kuala Lumpur,Universiti of Malaya Press, 2012), 265.
  2. [2] T.M. Vu and J. Pumwa, Feasible path planning for autonomousvehicles, Mathematical Problems in Engineering, 2014, 2014,1–13. DOI: https://doi.org/10.1155/2014/317494.
  3. [3] W. Mansor Wan Muhamad, Vehicle steering dynamiccalculation and simulation, International Journal of InnovativeTechnology and Interdisciplinary Sciences, 2(1), 2019, 87–97.DOI: https://doi.org/10.15157/IJITIS.2019.2.1.87-97
  4. [4] V.T. Minh and F. Mohd Hashim, Tracking setpoint robustmodel predictive control for input saturated and softened stateconstraints, International Journal of Control, Automation andSystems, 9(5), 2011, 958–965.
  5. [5] P. Deshpande, R. Amrutsamanvar, and S. Subramanian, Vehiclepath generation and tracking in mixed road traffic, IFACPapersOnLine, 53(1), 2020, 524–529.
  6. [6] W. Xu, R. Sainct, D. Gruyer, and O. Orfila, Safe vehicletrajectory planning in an autonomous decision supportframework for emergency situations, Applied Science, 11, 2021,6373. DOI: https://doi.org/10.3390/app11146373
  7. [7] L. Rossi, A. Ajmar, M. Paolanti, and R. Pierdicca,Vehicle trajectory prediction and generation using LSTMmodels and GANs, PLoS One, 16(7),2021, e0253868. DOI:https://doi.org/10.1371/journal.pone.0253868
  8. [8] C. Wei and S. Li, Planning a continuous vehicle trajectory foran automated lane change maneuver by nonlinear programmingconsidering car-following rule and curved roads, Journal ofAdvanced Transportation, 2020, 2020, 17.
  9. [9] C. Michaelis, A.B. Lehr, and C. Tetzlaff, Robust trajectorygeneration for robotic control on the neuromorphic researchchip Loihi, Frontiers in Neurorobotics, 14, 2020, 589532, DOI:https://doi.org/10.3389/fnbot.2020.589532
  10. [10] V.T. Minh, R. Moezzi, K. Dhoska, and J. Pumwa, Modelpredictive control for autonomous vehicle tracking, International Journal of Innovative Technology and InterdisciplinarySciences, 4(1), 2021, 560–603.
  11. [11] Z. Liu, N. Liu, H. Wang, S. Tian, N. Bai, F. Zhang,and L. Cui, A new type of industrial robot trajectorygeneration component based on motion modularity technology, Journal of Robotics, 2020, 2020, 3196983. DOI:https://doi.org/10.1155/2020/3196983
  12. [12] H. Zhang, H. Qiu, X. Zhang, and P. Hu, Recent advances onmanipulator trajectory planning methods, Recent Patents onMechanical Engineering, 13(4), 2020, 303–327.
  13. [13] B. Zhang and D. Zhu, A new method on motion planningfor mobile robots using jump point search and Bezier curves,International Journal of Advanced Robotic Systems, 18(4),2021, 1–11.
  14. [14] Q. Zou, Robust and efficient tool path generation formachining low-quality triangular mesh surfaces, InternationalJournal of Production Research, 59(24), 2020, 7457–7467, DOI:https://doi.org/10.1080/00207543.2020.1842939
  15. [15] M. Wang, J. Xiao, F. Zeng, and G. Wang, Research on optimizedtime-synchronous online trajectory generation method for arobot arm, Robotics and Autonomous Systems, 126, 2020,1–12.
  16. [16] L. Yu, D. Kong, and X. Yan, A driving behaviour planningand trajectory generation method for autonomous electric bus,Future Internet, 10(51), 2018, 1–14.
  17. [17] V.T. Minh, N. Afzulpurkar, and W. Muhamad, Fault detectionmodel-based controller for process systems, Asian Journal ofControl, 13(3), 2011, 382–397.
  18. [18] V.T. Minh, F.B.M. Hashim, and M. Awang, Development of areal-time clutch transition strategy for a parallel hybrid electricvehicle, Journal of Systems and Control Engineering, 13(3),2011, 382–397.
  19. [19] W. Xu, J. Wei, J.M. Dolan, H. Zhao, and H. Zha, A real-timemotion planner with trajectory optimization for autonomousvehicles, Proc. IEEE Int. Conf. on Robotics and Automation,Saint Paul, MN, 2012, 1–14.
  20. [20] M. Nolte, M. Rose, T. Stolte, and M. Maurer, Model predictivecontrol based trajectory generation for autonomous vehicles–an architectural approach, Proc. IEEE Intelligent VehiclesSymposium, Los Angeles, CA, Jun. 2017, 798–805.
  21. [21] F. Zhang, R. Xia, and X. Chen, An optimal trajectory planningalgorithm for autonomous trucks: Architecture, algorithm,and experiment, International Journal of Advances RoboticSystems, 17(2), 2020, 1–11.
  22. [22] J. L´evine, Analysis and control of nonlinear systems: aflatness-based approach, 1st ed. (New York, NY, Springer,2009).
  23. [23] W. Dong and Y. Guo, New trajectory generation methodsfor nonholonomic mobile robots, Proc. Int. Symposium onCollaborative Technologies and Systems, Saint Louis, MO, May2005, 353–358.
  24. [24] M. G´omez, V. Gonz´alez; T. Mart´ınez-Mar´ın, D. Meziat,and S. S´anchez, Optimal motion planning by reinforcementlearning in autonomous mobile vehicles, Robotica, 30, 2012,159–170.
  25. [25] W. Zhang, A robust lateral tracking control strategy forautonomous driving vehicles. Mechanical Systems and SignalProcessing, 150, 2021, 107238.
  26. [26] T. Ahn, Y. Lee, and K. Park, Design of integrated autonomousdriving control system that incorporates chassis controllersfor improving path tracking performance and vehicle stability,Electronics, 10, 2021, 144.
  27. [27] D. F´enyes, B. N´emeth, and P. G´asp´ar, A novel data-drivenmodeling and control design method for autonomous vehicles,Energies, 14, 2021, 517.
  28. [28] V.T. Minh, M. Tamre, V. Musalimov, P. Kovalenko, I.Rubinshtein, I. Ovchinnikov, and R. Moezzi, Simulationof human gait movements, International Journal of Innovative Technology and Interdisciplinary Sciences, 3, 2020,326–345.
  29. [29] V.T. Minh, N. Afzulpurkar, and W.M.W. Muhamad, Faultdetection and control of process systems, MathematicalProblems in Engineering, 2007, 2007, 80321.
  30. [30] V.T. Minh, Automatic control of clutch engagement and slip forhybrid vehicle, International Journal of Innovative Technologyand Interdisciplinary Sciences, 2, 2019, 49–61.
  31. [31] I. Ovchinnikov and P. Kovalenko, Predictive control modelto simulate humanoid gait, International Journal of Innovative Technology and Interdisciplinary Sciences, 1, 2019,9–17.
  32. [32] J. Pumwa, Time variant predictive control of autonomousvehicles, International Journal of Innovative Technology andInterdisciplinary Sciences, 2, 2019, 62–77.
  33. [33] V.T. Minh and F. Mohd Hashim, Adaptive teleoperationsystem with neural network-based multiple model control, Mathematical Problems in Engineering, 2010, 2010,592054.
  34. [34] V.T. Minh and N. Afzulpurkar, Robustness of model predictivecontrol for Ill-conditioned distillation process, Developments inChemical Engineering and Mineral Processing, 13(3–4), 2005,311–316.
  35. [35] S.J.D. Al-Kamil and T. Szak´acs, Design all-wheel drive vehiclesbased on differential speed control systems, MechatronicSystems and Control, 49(1), 2021, 25–29. DOI: https://doi.org/10.2316/J.2021.201-0090
  36. [36] W. Wu and Y. Wei, Guiding unmanned aerial vehicle pathplanning design based on improved ant colony algorithm,Mechatronic Systems and Control, 49(1), 2021, 48–54.DOI: https://doi.org/10.2316/J.2021.201-0105
  37. [37] G. Shao, Intelligent vehicle control system based on cloudcomputing and Internet of Things, Mechatronic Systems andControl, 49(4), 2021, 245–250. DOI: https://doi.org/10.2316/J.2021.201-0207

Important Links:

Go Back