INDOOR LOCALIZATION SYSTEM OF ROS MOBILE ROBOT BASED ON VISIBLE LIGHT COMMUNICATION, 1-12.

Shihuan Chen, Wanlin Liang, Shangsheng Wen, Mouxiao Huang, Ruihong Cen and Weipeng Guan

References

  1. [1] W. Guan et al., Robot localization and navigation us-ing visible light positioning and SLAM fusion, Jour-nal of Lightwave Technology, 39(22), 2021, 7040–7051.https://doi.org/10.1109/JLT.2021.3113358.
  2. [2] L. Huang, S. Wen, Z. Yan, H. Song, S. Su, and W. Guan, SingleLED positioning scheme based on angle sensors in robotics,Applied Optics, 60, 2021, 6275–6287.
  3. [3] P. Keikhosrokiani, N. Mustaffa, N. Zakaria and M.I. Sarwar,Wireless Positioning Techniques and Location-based Services:A Literature Review, Lecture Notes in Electrical Engineering(Springer Netherlands, 2013).
  4. [4] Y. Chouchang and S. Huai-rong, WiFi-based indoor position-ing, IEEE Communications Magazine, 53(3), 2015, 150–157.
  5. [5] F. Topak, M.K. Pekericli, and A.M. Tanyer, Technologicalviability assessment of bluetooth low energy technology forindoor localization, Journal of Computing in Civil Engineering,32(5), 2018, 04018034.
  6. [6] C.T. Li, J.C.P. Cheng, and K. Chen, Top 10 technolo-gies for indoor positioning on construction sites, Automa-tion in Construction, 118, 2020, 103309, ISSN 0926-5805,https://doi.org/10.1016/j.autcon.2020.103309.
  7. [7] Z. Zhou, S. Wen, and W. Guan, RSE-based optical cameracommunication in underwater scenery with bubble degradation,Optical Fiber Communication Conference (Optical Society ofAmerica, 2021), M2B. 2.
  8. [8] Z. Dongfang, C. Gang, and A.F. Jay, Joint measurementand trajectory recovery in visible light communication, IEEETransactions on Control Systems Technology, 25(1), 2017,247–261.
  9. [9] W. Guan, S. Wen, L. Liu, and H. Zhang, High-precision indoorpositioning algorithm based on visible light communication us-ing complementary metal–oxide–semiconductor image sensor,Optical Engineering, 58(2), 2019, 024101.
  10. [10] W. Guan, Z. Liu, S. Wen, H. Xie and X. Zhang, Visible lightdynamic positioning method using improved Camshift-Kalmanalgorithm, IEEE Photonics Journal, 11(6), 2019, 1–22, Artno. 7906922, https://doi.org/10.1109/JPHOT.2019.2944080.
  11. [11] H. Lv, L. Feng, A. Yang, B. Lin, H. Huang, and S.Chen, Light emitting diode positioning system basedona lamp stripe, Optical Engineering, 58(4), 2019, 046103,https://doi.org/10.1117/1.OE.58.4.046103
  12. [12] X. Yu, J. Wang, and H. Lu, Single LED-based indoorpositioning system using multiple photodetectors, IEEEPhotonics Journal, 10(6), 2018, 1–8, Art no. 7909108,https://doi.org/10.1109/JPHOT.2018.2848947.10
  13. [13] H. Song, S. Wen, D. Yuan, L. Huang, Z. Yan, and W.Guan, Robust LED region-of-interest tracking for visible lightpositioning with low complexity, Optical Engineering, 60(5),2021, 053102, https://doi.org/10.1117/1.OE.60.5.053102.
  14. [14] H. Song, S. Wen, C. Yang, D. Yuan, and W. Guan, Universaland effective decoding scheme for visible light positioning basedon optical camera communication, Electronics, 10(16), 2021,1925. https://doi.org/10.3390/electronics10161925.
  15. [15] W. Guan, et al., “Robot localization and navigation us-ing visible light positioning and SLAM fusion,” Jour-nal of Lightwave Technology, 39(22), 2021, 7040–7051,https://doi.org/10.1109/JLT.2021.3113358.
  16. [16] W. Guan, S. Chen, S. Wen, Z. Tan, H. Song, and W.Hou, High-accuracy robot indoor localization scheme basedon robot operating system using visible light positioning,IEEE Photonics Journal, 12(2), 2020, 1–16, Art no. 7901716,https://doi.org/10.1109/JPHOT.2020.2981485.
  17. [17] Z. Yan, W. Guan, S. Wen, L. Huang, and H. Song, Mul-tirobot cooperative localization based on visible light po-sitioning and odometer, IEEE Transactions on Instrumen-tation and Measurement, 70, 2021, 1–8, Art no. 7004808,https://doi.org/10.1109/TIM.2021.3086887.
  18. [18] B.J. Stephens, State estimation for force-controlled humanoidbalance using simple models in the presence of modeling error,IEEE International Conference on Robotics & Automation,2011.
  19. [19] R. Miyagusuku, A. Yamashita, and H. Asama, Data informa-tion fusion from multiple access points for WiFi-based self-localization, IEEE Robotics and Automation Letters, 4(2),2019, 269–276.
  20. [20] S. Xu, W. Chou, and H. Dong, A robust indoor localizationsystem integrating visual localization aided by CNN-basedimage retrieval with Monte Carlo localization, Sensors, 19(2),2019, 249.
  21. [21] X. Canyu, G. Weipeng, W. Yuxiang, F. Liangtao, and C. Ye,The LED-ID detection and recognition method based on visiblelight positioning using proximity method, IEEE PhotonicsJournal, 10(2), 2018, 1–16.
  22. [22] P. Qi, W. Guan, Y. Wu, C. Ye, X. Canyu, and W. Pengfei,Three-dimensional high-precision indoor positioning strategyusing Tabu search based on visible light communication, OpticalEngineering, 57(1), 2018, 1.
  23. [23] M. Huang, W. Guan, Z. Fan, Z. Chen, J. Li and B. Chen,Improved target signal source tracking and extraction methodbased on outdoor visible light communication using a cam-shift algorithm and Kalman Filter, Sensors, 18(12), 2018,4173.
  24. [24] W. Ke, C. Jingjing, L. Zhiwei, and H. Zhen, Demodulationmethod for distorted carrier of visible light communicationin indoor positioning for autonomous robots, 2017 2nd Inter-national Conference on Advanced Robotics and Mechatronics(ICARM), Hefei, China, 2017.
  25. [25] L. Zhitian, Y. Aiying, L. Huichao, F. Lihui and S. Wenzhan,Fusion of visible light indoor positioning and inertial navigationbased on particle filter, IEEE Photonics Journal, 9(5), 2017,7906613.
  26. [26] L. Zhitian, L. Feng, and Y. Aiying, Fusion based on visible lightpositioning and inertial navigation using extended KalmanFilters, Sensors, 17(5), 2017, 1093.
  27. [27] M. Alajlan, I. Chaari, A. Koubaa, H. Bennaceur, A. Am-mar, and H. Youssef, Global robot path planning using GAfor large grid maps: modelling, performance and experi-mentation, International Journal of Robotics and Automa-tion (2016). https://doi.org/10.2316/Journal.206.2016.6.206-4602.
  28. [28] M.M. Mohamed, J. Gu, and J. Luo, Modular designof neurosurgical robotic system, International Journal ofRobotics and Automation, 2018. https://doi.org/10.2316/Journal.206.2018.5.206-5093.
  29. [29] G. Weipeng, W. Yuxiang, X. Canyu, F. Liangtao, L. Xiaowei,and C. Yingcong, Performance analysis and enhancementfor visible light communication using CMOS sensors, OpticsCommunications, 410, 2018, 531–551.
  30. [30] G. Weipeng, W. Yuxiang, W. Shangsheng, C. Hao, C. Yang,and Z. Zhang, A novel three-dimensional indoor positioningalgorithm design based on visible light communication, OpticsCommunications, 392, 2017, 282–293.
  31. [31] H. Heqing, Y. Aiying, F. Lihui, N. Guoqiang, and G. Peng,Indoor positioning method based on metameric white lightsources and subpixels on a color image sensor, IEEE PhotonicsJournal, 2016, 1–1.
  32. [32] R. Mishra and A. Javed, ROS based service robot platform,2018 4th International Conference on Control, Automationand Robotics (ICCAR), 2018.
  33. [33] P. YoonSeok, C. HanCheol, J. RyuWoon, and L. TaeHoon,Important concepts of ROS, ROS Robot Programming, Seoul,ROBOTIS Co., Ltd., 2017, 40–89.
  34. [34] H. Song, et al., Robust LED region-of-interest tracking for visi-ble light positioning with low complexity, Optical Engineering,60(5), 2021, 053102.
  35. [35] R. Miyagusuku, A. Yamashita, and H. Asama, Data informa-tion fusion from multiple access points for WiFi-based self-localization, IEEE Robotics and Automation Letters, 4(2),2019, 269–276.
  36. [36] M. Huang, W. Guan, Z. Fan, Z. Chen, J. Li, and B. Chen,Improved target signal source tracking and extraction methodbased on outdoor visible light communication using a cam-shift algorithm and Kalman Filter, Sensors, 18(12), 2018,4173.
  37. [37] Raspberry Pi Foundation, Raspberry Pi 3 Model B - RaspberryPi, Raspberry Pi Foundation, https://www.raspberrypi.org/products/raspberry-pi-3-model-b/. [Accessed 23 September2018].

Important Links:

Go Back