STRUCTURE AND TUNING OF OBSERVER-BASED PID, 205-215.

Wenjie Han, Xingqi Hu, and Wen Tan

References

  1. [1] K.J. ˚Astr¨om and T. H¨agglund, The future of PID control,Control Engineering Practice, 9(11), 2001, 1163–1175.DOI: https://doi.org/10.1016/S0967-0661(01)00062-4.
  2. [2] D. Chen and D.E. Seborg, PI/PID controller design basedon direct synthesis and disturbance rejection, Industrial &Engineering Chemistry Research, 41(19), 2002, 4807–4822.DOI: 10.1021/ie010756m.
  3. [3] S. Dormido, Advanced PID control—[Book Review], IEEEControl Systems Magazine, 26(1), 2006, 98–101.
  4. [4] P. Divijesh Puninchathaya, M. Rao, R. Rao, and S. Kumar,Experimental investigations on flexurally amplified piezoactua-tor based active vibration isolation system using PID controller,Mechatronic Systems and Control, 49(3), 2021.
  5. [5] V.A. Oliveira, L.V. Cossi, M. Teixeira, and A. Silva, Synthesisof PID controllers for a class of time delay systems, Automatica,45(7), 2009, 1778–1782.
  6. [6] X.G. Duan, H.X. Li, and H. Deng, Effective tuning method forfuzzy PID with internal model control, Industrial & EngineeringChemistry Research, 47(21), 2008, 8317–8323.
  7. [7] R. Garrido-Moctezuma, D.A. Suarez, and R. Lozano, AdaptiveLQG control of positive real systems, Proc. Eur. Control Conf.(ECC), Brussels, Belgium, 1997, 144–149.
  8. [8] T. Wen, J. Liu, T. Chen, and H.J. Marquez, Comparison ofsome well-known PID tuning formulas, Computers & ChemicalEngineering, 30(9), 2006, 1416–1423.
  9. [9] J. Mocci, M. Quintavalla, A. Chiuso, S. Bonora, andR. Muradore, PI-shaped LQG control design for adaptive opticssystems, Control Engineering Practice, 102, 2020, 104528.
  10. [10] S.A. Suhail, A. Bazaz, and S. Hussain, Linear active disturbancerejection control with a higher order sliding mode observerapplied to a cart inverted pendulum, Mechatronic Systems andControl, 49(4), 2021.
  11. [11] A.H. Hameed, A.Q. Al-Dujaili, A.J. Humaidi, and H.A.Hussein, Design of terminal sliding position control forelectronic throttle valve system: A performance comparativestudy, International Review of Automatic Control, 12(5), 2019,251–260.
  12. [12] A.J. Humaidi, S.K. Kadhim, and A.S. Gataa, Development ofa novel optimal backstepping control algorithm of magneticimpeller-bearing system for artificial heart ventricle pump,Cybernetics and Systems, 51(4), 2020, 1–21.
  13. [13] A.J. Humaidi and A.I. Abdulkareem, Design of augmentednonlinear PD controller of Delta/Par4-Like robot, Journal ofControl Science and Engineering, 2019(2019), 2019, 1–11. DOI:10.1155/2019/7689673.
  14. [14] T. Ghanim, A.R. Ajel, and A.J. Humaidi, Optimal fuzzylogic control for temperature control based on social spideroptimization, IOP Conference Series. Materials Scienceand Engineering, 745(1), 2020, 12099. DOI: 10.1088/1757-899X/745/1/012099.
  15. [15] S. Ghosh, H. Goud, P. Swarnkar, and D.M. Deshpande, Designof an optimized adaptive PID controller for induction motordrive, Mechatronic Systems and Control, 49(3), 2021.
  16. [16] P. Dash, L.C. Saikia, and N. Sinha, Automatic generationcontrol of multi area thermal system using Bat algorithmoptimized PD–PID cascade controller, International Journalof Electrical Power & Energy Systems, 68, 2015, 364–372.
  17. [17] A. Latif, K. Shankar, and P.T. Nguyen, Legged fire fighterrobot movement using PID, Journal of Robotics and Control(JRC), 1(1), 2020, 15–19.
  18. [18] V.R. Segovia, T. H¨agglund, and K.J. ˚Astr¨om, Measurementnoise filtering for common PID tuning rules, ControlEngineering Practice, 32, 2014, 43–63.
  19. [19] M. Huba, D. Vranˇci´c, and P. Bist´ak, PID control with higherorder derivative degrees for IPDT plant models, IEEE Access,9, 2021, 2478–2495. DOI: 10.1109/access.2020.3047351.
  20. [20] P.-O. Larsson and T. H¨agglund, Control signal constraints andfilter order selection for PI and PID controllers, Proceedings ofthe 2011 American Control Conference, O’Farrell Street, SanFrancisco, CA, June 29–July 1, 2011, 4994–4999.
  21. [21] Z. Gao, Scaling and bandwidth-parameterization basedcontroller tuning, Proc. Amer. Control Conf., 6, 2003, 4989–4996. DOI: 10.1109/acc.2003.1242516.
  22. [22] O. Garpinger and T. H¨agglund, Software-based optimalPID design with robustness and noise sensitivity con-straints, Journal of Process Control, 33, 2015, 90–101, DOI:https://doi.org/10.1016/j.jprocont.2015.06.001.
  23. [23] B. Zhang, W. Tan, and J. Li, Tuning of linear active disturbancerejection controller with robustness specification, ISA Trans-actions, 85, 2019, 237–246. DOI: 10.1016/j.isatra.2018.10.018.
  24. [24] C.A. Antoulas, On modeling for robust control, IFACProceedings Volumes, 30(11), 2020, 1603–1605.
  25. [25] K.J. ˚Astr¨om and T. H¨agglund, Benchmark systems for PIDcontrol, IFAC Proceedings Volumes, 33(4), 2000, 165–166.
  26. [26] T.B. ˇSekara and M.R. Matauˇsek, Revisiting theZiegler–Nichols process dynamics characterization, Jour-nal of Process Control, 20(3), 2010, 360–363. DOI:https://doi.org/10.1016/j.jprocont.2009.08.004.
  27. [27] J. Han, From PID to active disturbance rejection control, IEEETransactions on Industrial Electronics, 56(3), 2009, 900–906.DOI: 10.1109/tie.2008.2011621.214
  28. [28] P.M. Oliveira and J.D. Hedengren, An APMonitor temperaturelab PID control experiment for undergraduate students, 24thIEEE International Conference on Emerging Technologies andFactory Automation (ETFA), Zaragoza, Spain, Sep. 2019,790–797. DOI: 10.1109/etfa.2019.8869247.
  29. [29] W. Cui, W. Tan, D. Li, and Y. Wang, Tuning oflinear active disturbance rejection controllers based on stepresponse curves, IEEE Access, 8, 2020, 180869–180882, DOI:10.1109/access.2020.3028459.
  30. [30] K.J. ˚Astr¨om and T. H¨agglund, Advanced PID control, (ResearchTriangle Park, NC: ISA-The Instrumentation, Systems andAutomation Society, 2006).

Important Links:

Go Back