Yanli Li, Weidong Liu, Le Li, and Xiaokang Lei


  1. [1] A.V. Le, P.C. Ku, T.T. Tun, N.H.K. Nhan, Y.Y.Shi, and R.E. Mohan, Realization energy optimization ofcomplete path planning in differential drive based self-reconfigurable floor cleaning robot, Energies, 12(6), 2019,1–23.
  2. [2] Q.Q. He, R.F. Zhang, T.H. Liu, Y. Yang, Y. Peng, and M.M.Wang, Environmental map construction and path planningsystem design of indoor shopping guide robot, Transducer andMicrosystem Technology, 38(10), 2019, 82–84.
  3. [3] N.V. Kumara and C.S Kumar, Development of collision freepath planning algorithm for warehouse mobile robot, ProcediaComputer Science, 133, 2018, 456–463.
  4. [4] R. Fareh, M. Baziyad, M. Rahman, T. Rabie, and M. Bettayeb,Investigating reduced path planning strategy for differentialwheeled mobile robot, Robotica, 37(2), 2020, 235–255.
  5. [5] M. NayabZafara and J.C. Mohantab, Methodology for pathplanning and optimization of mobile robots: A review, ProcediaComputer Science, 133, 2018, 141–152.
  6. [6] J. Xin, C. Meng, F. Schulte, J. Peng, Y. Liu, and R.R. Negen-born, A time-space network model for collision-free routing ofplanar motions in a multi-robot station, IEEE Transactionson Industrial Informatics, 16(10), 2020, 6413–6422.
  7. [7] J. Xin, C. Meng, S. Frederik, J. Peng, Y. Liu, and R. Negen-born, A time-space network model for collision-free routing ofplanar motions in a multi-robot station, IEEE Transactions onIndustrial Informatics, 2020, doi: 10.1109/TII.2020.2968099.
  8. [8] B.K. Patle, L.G. Babu, A. Pandey, D.R.K. Parhi, and A. Ja-gadeesh, A review: On path planning strategies for navigationof mobile robot, Defence Technology, 15(4), 2019, 582–606.
  9. [9] J. Ni, X. Li, M. Hua, and S.X. Yang, Bioinspired neuralnetwork-based q-learning approach for robot path planning inunknown environments, International Journal of Robotics andAutomation, 31(6), 2016, 464–474.527
  10. [10] J. Ni, X. Yang, M. Tang, W. Cao, P. Shi, and S.X. Yang, Animproved real-time path planning method based on dragonflyalgorithm for heterogeneous multi-robot system, IEEE Access,8, 2020, 140558–140568.
  11. [11] C. Kim, J. Suh, and J. Han, Development of a hybrid pathplanning algorithm and a bio-inspired control for an omni-wheelmobile robot, Sensors, 20(15), 2020, 1–22.
  12. [12] J. Guo, Y.F. Xiao, X.Y. Liu, and L. Chen, Mobile robot pathplanning based on fusion of A algorithm and Bezier curve,Microcomputer and Its Applications, 36(2), 2017, 52–56.
  13. [13] B. Hao, and Z.P. Yan, Recovery path planning for an agricul-tural mobile robot by Dubins-RRT algorithm, InternationalJournal of Robotics and Automation, 32(2), 2018, 202–207.
  14. [14] X.L. Dai, S. Long, Z.W. Zhang, and D.W. Gong, Mobilerobot path planning based on ant colony algorithm withA Heuristic method, Frontiers in Neurorobotics, 2019, doi:10.3389/fnbot.2019.00015.
  15. [15] M. Alajlan, I. Chaari, A. Koubaa, H. Bennaceur, A. Ammar,and H. Youssef, Global robot path planning using GA forlarge grid maps: Modelling, performance and experimentation,International Journal of Robotics and Automation, 31(6),2016, 484–495.
  16. [16] E.I. Kobayashi, T. Asajima, and N. Sueyoshi, Advanced nav-igation route optimization for an oceangoing vessel, Inter-national Journal of Marine Navigation and Safety of SeaTransportation, 5(3), 2011, 377–383.
  17. [17] V. Parque and T. Miyashita, Smooth curve fitting of mobilerobot trajectories using differential evolution, IEEE Access, 8,2020, 82855–82866.
  18. [18] J.J. Zhang, S.B. Zhang, and R.Z. Gao, Discrete-time predictivetrajectory tracking control for nonholonomic mobile robotswith obstacle avoidance, International Journal of AdvancedRobotics Systems, 15(5), 2019, 1–11.
  19. [19] T. Nguyena, T. Hoang, M. Pham, and N. Dao, A Gaus-sian wavelet network-based robust adaptive tracking con-troller for a wheeled mobile robot with unknown wheelslips, International Journal of Control, 92(11), 2019,2681–2692.
  20. [20] H.Z Xiao, Z.J Li, C.G. Yang, L.X Zhang, P.J Yuan, L. Ding,and T.M. Wang, Robust stabilization of a wheeled mobilerobot using model predictive control based on neurodynamicsoptimization, IEEE Transactions on System and Control,64(1), 2016, 505–516.
  21. [21] J. Zhai, and Z. Song, Adaptive sliding mode trajectory trackingcontrol for wheeled mobile robots, International Journal ofControl, 92(10), 2019, 2255–2262.
  22. [22] Z. Zhang, Y. Shi, Z. Zhang, and W. Yan, New results on sliding-mode control for Takagi-Sugeno fuzzy multiagent systems,IEEE Transactions on Cybernetics, 49(5), 2019, 1592–1604.
  23. [23] W. Abbasi, F.U. Rehman, I. Shah, and A. Rauf, Stabilizingcontrol algorithm for nonholonomic wheeled mobile robotsusing adaptive integral sliding mode, International Journal ofRobotics and Automation, 34(2), 2019, 112–119.
  24. [24] L. Ding, C. Chen, Y.K. Li, G.J. Liu, H.B. Gao, and Z.Q.Deng, Tracking control of nonholonomic wheeled mobile robotson slopes, International Journal of Robotics and Automation,33(4), 2018, 312–325.
  25. [25] R.A. Mahmood, and K. Jafar, Point stabilization of nonholo-nomic spherical mobile robot using nonlinear model predictivecontrol, Robotics and Autonomous Systems, 98, 2017, 347–359.
  26. [26] D.C. Chen, L.S. Li, and L.F. Liao, A recurrent neural networkapplied to optimal motion control of mobile robots with physicalconstraints, Applied Soft Computing Journal, 85, 2019, 1–13.
  27. [27] Y.A. Kapitanyuk, A.V. Proskurnikov, and M. Cao, A guidingvector-field algorithm for path-following control of nonholo-nomic mobile robots, IEEE Transactions on Control SystemsTechnology, 26(4), 2018, 1372–1385.
  28. [28] Y. Kanayama, K. Yoshihiko, F. Miyazaki, and T. Noguchi, Astable tracking control method for an autonomous mobile robot,Proceeding of 90 IEEE International Conference Robotics andAutomation, Cincinnati, 1990, 384–389.
  29. [29] K. Majd, M.R. Jahromi, and A. Homaifar, A stable analyticalsolution method for car-like robot trajectory tracking andoptimization, IEEE-CAA Journal of Autonmatica Sinica, 7(1),2020, 39–47.

Important Links:

Go Back