DISCRETE TIME DC MOTOR MODEL FOR LOAD TORQUE ESTIMATION FOR PID-IMC SPEED CONTROL, 102-108.

Filemón Arenas-Rosales, Fernando Martell-Chávez, and Irma Y. Sánchez-Chávez

References

  1. [1] Y. Yassine and B. Messaoud, Performance improvement ofminimax optimized pi controller-based dc drive system withactuator saturation, Control and Intelligent Systems, 42(4),2014, 1–8.
  2. [2] Md. Islam, Accuracy analysis of numerical solutions of initialvalue problems (IVP) for ordinary differential equations (ODE),IOSR Journal of Mathematics, 11(3), 2015, 18–23.
  3. [3] G. Zhai, T. Norisada, J. Imae, and T. Kobayashi, An exten-sion of generalized bilinear transformation for digital redesign,International Journal of Innovative Computing, Informationand Control, 8(6), 2012, 4071–4081.
  4. [4] R. De Keyser, C.I. Muresan, and C.M. Ionescu, An efficientalgorithm for low-order direct discrete-time implementation offractional order transfer functions, ISA Transactions, 74, 2018,1–10.
  5. [5] M.A.A. Ismail, J. Windelberg, and G. Liu, Simplified sensorlesstorque estimation method for harmonic drive based electro-mechanical actuator, IEEE Robotics and Automation Letters,6(2), (2021), 835–840.
  6. [6] I. Neborak and M. Kuchar, Load torque impact on DC motorcurrent control accuracy, in 2016 ELEKTRO (Strbske Pleso,Slovakia, 2016), 341–345.
  7. [7] C. Khajorntridet and J. Srisertpol, Simulation studies of posi-tion control system for estimation of DC motor load torque, Re-cent Advances in Signal Processing, Robotics and Automation,2010, 107–112.
  8. [8] D. Grignion, X. Chen, Y. Tan, H. Qian, and N. Kar, Robustload disturbance torque estimation for a DC motor drivesystem, The International Federation of Automatic Control,7, 2012, 460–466.
  9. [9] A. Archela, D. Guilherme, and L.F. de Melo, Torque controlof a dc motor with a state space estimator and Kalman filterapplied for vehicle traction, in INDUSCON (Sao Paulo, Brazil,2018), 763–769.
  10. [10] D.T. Liem, D.Q. Truong, and K.K. Ahn, A torque estimatorusing online tuning grey fuzzy PID for applications to torque-sensorless control of DC motors, Mechatronics, 26, 2015,1–19.
  11. [11] S. Fabbri, M. Nienhaus, and E. Grasso, Robust load-torqueestimation for DC motor without torque sensor, in AEIT,(Florence, Italy, 2019), 1–6.
  12. [12] C. Mart´ınez-Garc´ıa, C. Astorga-Zaragoza, V. Puig, J. Reyes-Reyes, and F. L´opez-Estrada, A simple nonlinear observer forstate and unknown input estimation: DC motor applications,IEEE Transactions on Circuits and Systems II, 67(4), 2020,710–714.
  13. [13] D. Grignion, X. Chen, N. Kar, and H. Qian, Estimation ofload disturbance torque for dc motor drive systems underrobustness and sensitivity consideration, IEEE Transactionson Industrial Electronics, 61(2), 2014, 930–942.
  14. [14] S. Metha, P. Shah, and V. Vaidya, Design and comparativestudy of PID controller tuning method from IMC tuned 2-DOF107pole placement parameter structure for the DC motor speedcontrol application, in NUiCONE, (Ahmedabad, India, 2013),1–4.
  15. [15] A.R. Pathiran and M. Getachew, Robustness performanceanalysis of internal model control system for minimum, Mecha-tronics System and Control, 49(4), 2021.
  16. [16] M.N. Ujjwal, D. Chanchal, and K.M. Rajani, A switchingIMC-PID controller design for lag dominating processes withreal-time validation, Mechatronic Systems and Control, 48(3),2020, 171–182.
  17. [17] D. Tang and J.H. Wang, Optimal closed-loop input signalfor internal model control, Mechatronic Systems and Control,47(3), 2019, 160–171.
  18. [18] I.S. Okoro and C.O. Enwerem, Performance assessment of amodel-based DC motor scheme, Applications of Modelling andSimulation, 3(3), 2019, 145–153.
  19. [19] K. Tripathi, IMC based tuning method of PID controller for DCmotor speed control (2016). https://www.semanticscholar.org/paper/IMC-based-tuning-methodof-PID-controller-for-DC-Tripathi/ef2f2f5deabfd3068f8311d735db8f52becf0e26.
  20. [20] A.U. Omeiza, P. Avong, and B. Kwembe, DC motor speed con-trol using internal model controller: Industrial TransformationStrategy, IJEAT, 9(5), 2020, 300–306.

Important Links:

Go Back