CSLAM SYSTEM CONSENSUS ESTIMATION IN DYNAMIC COMMUNICATION NETWORKS, 227-235.

Shuhuan Wen,∗ Zhe Wang,∗∗ Jian Chen,∗ Luigi Manfredi,∗∗∗ and Yongzheng Tong∗

References

  1. [1] G. L. Zhang, W. J. Tang, Z. Jing, et al., An overview on thecooperative SLAM problem of multi-robot systems consideringcommunication conditions, Acta Automatica Sinica, 40(10),2014, 2073–2088.
  2. [2] Y. Shao, M. Zhou, and M. Wang, The impact of the overallstructure of cluster network on cluster innovation capability:An Empirical Study Based on Deyang’s equipment manufac-turing industry cluster, System Engineering, 2013(5), 2013,85–91.
  3. [3] Q. Meng, Y. Qi, S. Zhang, et al., Intelligent robotand its development, Journal of Ocean University ofChina (Natural Science) Natural Science, 34(5), 2004,831–838.
  4. [4] Z. Lei, J. Fan, Z. Jie, et al., A method for mobile robotSLAM based on modified particle filter, Journal of ChongqingUniversity, 2014.
  5. [5] X. Ning, L. I. Wenbo, and B. Fan, Federal extended kalmanparticle filtering algorithm, Journal of Projectiles RocketsMissiles & Guidance, 31(2), 2011, 189–188.
  6. [6] C. Peng, Research on indoor robot SLAM based on laserrangefinder, Wuhan University of Science and Technology,2012, 1–5.
  7. [7] H. Wang, G. Fu, X. Bian, et al. SRCKF based simultaneouslocalization and mapping of mobile robots, Robot, 35(2), 2013,200.
  8. [8] H. Shen, Research on multi target-tracking algorithm basedon particle filter, Zhejiang University, 2006, 1–6.
  9. [9] T. Kov´acs, A. Psztor, and Z. Istenes, A multi-robot explo-ration algorithm based on a static Bluetooth communica-tion chain, Robotics & Autonomous Systems, 59(7–8), 2011,530–542.
  10. [10] A. Martin and M. R. Emami, Just-in-time cooperative si-multaneous localization and mapping: A robust particle filterapproach, International Journal of Robotics and Automation,29(2), 2014, 119–132.
  11. [11] H. C. Lee, S. H. Lee, T. S. Lee, et al., A survey of map mergingtechniques for cooperative-SLAM, in International Conferenceon Ubiquitous Robots and Ambient Intelligence (IEEE, 2013),285–287.
  12. [12] T. Huang, P. Yang, K. Yang, et al., Navigation of mobile robotin unknown environment based on TS Neuro-fuzzy system,International Journal of Robotics and Automation, 30(4),2015.
  13. [13] S. Saeedi, A. Nagaty, C. Thibault, et al., Perception andnavigation for an autonomous quadrotor in GPS-denied envi-ronments, International Journal of Robotics and Automation,31(6), 2016.
  14. [14] S. Saeedi, L. Paull, M. Trentini, et al., Occupancy gridmap merging for multiple robot simultaneous localization andmapping, International Journal of Robotics and Automation,30(2), 149–157, 2015.
  15. [15] L. Carlone, N. M. Kaouk, J. Du, et al., Simultaneous localiza-tion and mapping using Rao-Blackwellized particle filters inmulti robot systems, Journal of Intelligent & Robotic Systems,63(2), 2011, 283–307.
  16. [16] F. Pei, X. Wu, and H. Yan, Distributed SLAM system usingparticle swarm optimized particle filter for mobile robot nav-igation, in IEEE International Conference on Mechatronicsand Automation (IEEE, 2016), 994–999.
  17. [17] Z. Liang and Y. Hao, Adaptive particle filter for self-localizationof RoboCup 3D soccer robots, International Journal of Roboticsand Automation, 29(3), 2014.
  18. [18] B. Ristic and D. Clark, Particle filter for joint estimationof multi-object dynamic state and multi-sensor bias, in 2012IEEE International Conference on Acoustics, Speech and SignalProcessing (ICASSP) (IEEE, 2012), 3877–3880.
  19. [19] P. Wu, Q. Luo, and L. Kong, Cooperative localization ofnetwork robot system based on improved MPF, in IEEE Inter-national Conference on Information and Automation (IEEE,2017), 796–800.234
  20. [20] D. Gu and H. Hu, Target tracking by using particle filterin sensor networks, International Journal of Robotics andAutomation, 24(3), 2009, 169–176.
  21. [21] Y. P. Tian and C. L. Liu, Consensus of multi-agent systems withdiverse input and communication delays, IEEE Transactionson Automatic Control, 53(9), 2008, 2122–2128.
  22. [22] Z. Wu, Z. Guan, X. Wu, et al., Consensus based formationcontrol and trajectory tracing of multi-agent robot systems,Journal of Intelligent and Robotic Systems, 48(3), 2007, 397–410.
  23. [23] H. Zhang and Q. Hui, Parallel multiagent coordination op-timization algorithm: implementation, evaluation, and ap-plications, IEEE Transactions on Automation Science andEngineering, 14(2), 2017, 984–995.
  24. [24] H. Zhang and Q. Hui, Topological heterogeneity and optimalityanalysis for multiagent formation, in 2012 IEEE 51st IEEEConference on Decision and Control (CDC), IEEE, 2012.
  25. [25] H. Zhang, S. R. Mullen, and Q. Hui, White noise distur-bance and topological heterogeneity analysis for the hybridconsensus protocol, in 2011 50th IEEE Conference on Deci-sion and Control and European Control Conference, IEEE,2011.
  26. [26] F. Pei, H. Li, and M. Wu, Distributed unscented marginal-ized particle filter for simultaneous localization and map-ping, Journal of Shanghai Jiao Tong University, 48(7), 2014,987–992.
  27. [27] J. Qiu and P. Fei, Distributed dynamic target tracking forWSN based on improved particle filter prediction, ComputerMeasurement & Control, 22(4), 2014.
  28. [28] M. Elhoseny, A. Shehab, and X. Yuan, Optimizing robot pathin dynamic environments using genetic algorithm and beziercurve, Journal of Intelligent & Fuzzy Systems, 33(4), 2017,2305–2316.
  29. [29] C. Chen, B. Wu, X. Tuo, et al., Relay translation policies basedon state pruning for ad hoc networks, International Journalof Robotics and Automation, 33(3), 2018.
  30. [30] D. Ramadasan, T. Chateau, and M. Chevaldonne, DCSLAM:A dynamically constrained real-time SLAM, 2015, 105–112.
  31. [31] F.-L. Zhu, Z. Bi, and C. Jun, Parallel optimization andimplementation of SLAM algorithm based on particle filter,Journal of Guangdong University of Technology, 2017(2),2017.
  32. [32] M. A. V´azquez and J. M´ıguez, A robust scheme for distributedparticle filtering in wireless sensors networks, Signal Processing,131, 2017, 190–201.

Important Links:

Go Back