SEA FORCE CONTROL DESIGN BASED ON A PASSIVE INDEX, 67-74.

Siqi Li∗ and Chunlu Wang∗∗

References

  1. [1] A. Calanca, R. Muradore, and P. Fiorini, A review of algorithmsfor compliant control of stiff and fixed-compliance robots,IEEE/ASME Transactions on Mechatronics, 21(2), 2016,613–624.
  2. [2] Y. Zhao, S.J. Jorgensen, and L. Sentis, Impedance controland performance measure of series elastic actuators, IEEETransactions on Industrial Electronics, 65(3), 2018, 2817–2827.
  3. [3] N. Paine, S. Oh, and L. Sentis, Design and control con-siderations for high-performance series elastic actuators,IEEE/ASME Transactions on Mechatronics, 19(3), 2014,1080–1091.
  4. [4] B. Hritwick, T.H.T. Zion, and R. Hongliang, Soft roboticswith compliance and adaptation for biomedical applicationsand forthcoming, International Journal of Robotics andAutomation, 33(1), 2018, 69–80.
  5. [5] G.A. Pratt and M.M. Williamson, Series elastic actuators,International IEEE Conf. on Intelligent Robots and Systems,Pittsburgh, Pennsylvania, USA, 1995, 399–406.
  6. [6] A. AlbuSch¨affer, C. Ott, and G. Hirzinger, A unified passivity-based control framework for position, torque and impedancecontrol of flexible joint robots, The International Journal ofRobotics Research, 26(1), 2007, 23–39.
  7. [7] C. Ott, A. Albu-Schaffer, A. Kugi, and G. Hirzinger, Onthe passivity-based impedance control of flexible joint robots,IEEE Transactions on Robotics, 24(2), 2008, 416–429.
  8. [8] G.A. Pratt, P. Willisson, C. Bolton, and A. Hofman, Latemotor processing in low-impedance robots: Impedance controlof series-elastic actuators, Proc. 2004 American Control Conf.,Boston, MA, USA, 2004, 3245–3251.
  9. [9] H. Vallery, J. Veneman, E. Van Asseldonk, et al., Compli-ant actuation of rehabilitation robots, IEEE Robotics andAutomation Magazine, 15(3), 2008, 60–69.
  10. [10] N.L. Tagliamonte and D. Accoto, Passivity constraints for theimpedance control of series elastic actuators, Proceedings ofthe Institution of Mechanical Engineers, Part I: Journal ofSystems and Control Engineering, 228(3), 2014, 138–153.
  11. [11] G. Wyeth, Demonstrating the safety and performance of a ve-locity sourced series elastic actuator, 2008 IEEE InternationalConf. on Robotics and Automation, Pasadena, CA, USA, 2008,3642–3647.
  12. [12] A. Calanca, R. Muradore, and P. Fiorini, Impedance controlof series elastic actuators: Passivity and acceleration-basedcontrol, Mechatronics, 47, 2017, 37–48.
  13. [13] K. Li, X. Zhao, S. Sun, and M. Tan, Robust target trackingand following for a mobile robot, International Journal ofRobotics and Automation, 33(4), 2018, 326–337.
  14. [14] D.P. Losey, A. Erwin, C.G. Mcdonald, F. Sergi, and M.K.Mall, A time domain approach to control of series elasticactuators: Adaptive torque and passivity-based impedancecontrol, IEEE/ASME Transactions on Mechatronics, 21(4),2016, 2085–2096.
  15. [15] L. Sun, W. Sun, M. Wang, and J. Liu, Optimal control forseries elastic actuator using RISE feedback, Acta AutomaticaSinica, 44(12), 2018, 2170–2178.
  16. [16] K. Wang, H. Yang, W. Wang, and Z. Han, Force configuration ofa rigid-flexible gait rehabilitation robot, International Journalof Robotics and Automation, 33(6), 2018, 577–583.
  17. [17] K. Kong, J. Bae, and M. Tomizuka, Control of rotary serieselastic actuator for ideal force-mode actuation in human-robot interaction applications, IEEE/ASME Transactions onMechatronics, 14(1), 2009, 105–118.
  18. [18] M.H. Raibert and J.J. Craig, Hybrid position/force controlof manipulators, Journal of Dynamic Systems, Measurement,and Control, 103(2), 1981, 126–133.
  19. [19] W. He, L. Kong, Y. Dong, and C. Sun, Fuzzy trackingcontrol for a class of uncertain MIMO nonlinear systems withstate constraints, IEEE Transactions on Systems, Man, andCybernetics: Systems, 49(3), 2019, 543–554.
  20. [20] S. Zhang, Y. Dong, Y. Ouyang, Z. Yin, and K. Peng, Adaptiveneural control for robotic manipulators with output constraintsand uncertainties, IEEE Transactions on Neural Networks andLearning Systems, 29(11), 2018, 5554–5564.73
  21. [21] W. He and Y. Dong, Adaptive fuzzy neural network control fora constrained robot using impedance learning, IEEE Transac-tions on Neural Networks and Learning Systems, 29(4), 2018,1174–1186.
  22. [22] S.P. Buerger and N. Hogan, Complementary stability andloop shaping for improved human-robot interaction, IEEETransactions on Robotics, 23(2), 2007, 232–244.
  23. [23] Y. Ma, X. Wu, J. Yi, C. Wang, and C. Chen, A review onhuman-exoskeleton coordination towards lower limb roboticexoskeleton systems, International Journal of Robotics andAutomation, 34(4), 2019, 431–451.
  24. [24] C. Deniz and M. Cakir, A novel designed interactive trainingplatform for industrial robot offline programming and roboticseducation, International Journal of Robotics and Automation,32(6), 2017, 665–672.
  25. [25] M. Zheng, P.X. Liu, and M.Q.H. Meng, Interpretation ofhuman and robot emblematic gestures: How do they differ?,International Journal of Robotics and Automation, 34(1), 2019,55–70.
  26. [26] Q. Guo, Y. Zhang, and D. Jiang, A control approach for human-mechatronic-hydrauliccoupled exoskeleton in overload-carryingcondition, International Journal of Robotics and Automation,31(4), 2016, 272–280.
  27. [27] L. Hewing, S. Leonhardt, P. Apkarian, and B.J.E. Misgeld,H∞ optimal controller design with closed-loop positive realconstraints, Journal of Dynamic Systems, Measurement, andControl, 139, 2017, 1–8.
  28. [28] J.R. Forbes, Dual approaches to strictly positive real controllersynthesis with a H2 performance using linear matrix inequali-ties, International Journal of Robust Nonlinear Control, 23(8),2013, 903–918.
  29. [29] C. Scherer, P. Gahinet, and M. Chilali, Multiobjective output-feedback control via LMI optimization, IEEE Transactions onAutomatic Control, 42(7), 1997, 896–911.
  30. [30] P. Apkarian, P. Gahinet, and C. Buhr, Multi-model, multi-objective tuning of fixed-structure controllers, 2014 EuropeanControl Conf. (ECC), Strasbourg, France, 2014, 856–861.
  31. [31] A. Walsh and J.R. Forbes, A very strictly passive gain-scheduled controller: Theory and experiments, IEEE/ASMETransactions on Mechatronics, 21(6), 2016, 2817–2826.
  32. [32] A.R. Teel, T.T. Georgiou, and L. Praly, Input-output stability(Boca Raton: CRC Press, 1996), 895–908.
  33. [33] H.J. Marquez, Nonlinear control systems: Analysis and de-sign, IEEE Transactions on Automatic Control, 49(7), 2004,1225–1226.
  34. [34] A. van der Schaft, L2-gain and passivity techniques in nonlinearcontrol, 3th ed. (New York: Springer-Verlag, 2017).
  35. [35] W.M. Griggs, B.D.O. Anderson, and R.N. Shorten, A test fordetermining systems with "mixed" small gain and passivityproperties, Systems and Control Letters, 60(7), 2011, 479–485.
  36. [36] H.A. Paynter, Analysis and design of engineering systems(Boston: The MIT Press, 1961).
  37. [37] H. Yu, S. Huang, G. Chen, Y. Pan, and Z. Guo, Human-robot interaction control of rehabilitation robots with serieselastic actuators, IEEE Transactions on Robotics, 31(5), 2015,1089–1100.
  38. [38] N. Kottenstette and P.J. Antsaklis, Stable digital controlnetworks for continuous passive plants subject to delays anddata dropouts, 2007 46th IEEE Conf. on Decision and Control,New Orleans, LA, USA, 2007, 4433–4440.
  39. [39] N. Kottenstette, M.J. Mccourt, M. Xia, V. Gupta, and P.J.Antsaklis, On relationships among passivity, positive realness,and dissipativity in linear systems, Automatica, 50(4), 2014,1003–1016.
  40. [40] N. Kottenstette and P.J. Antsaklis, Relationships betweenpositive real, passive dissipative and positive systems, Proc. ofthe 2010 American Control Conf., Baltimore, MD, USA, 2010,409–416.
  41. [41] J. Bao and P.L. Lee, Process control: The passive systemsapproach (London: Springer, 2007).
  42. [42] R. Sepulchre, M. Jankovic, and P.V. Kokotovic, Constructivenonlinear control (London: Springer, 1997).
  43. [43] E. Last, Linear matrix inequalities in system and controltheory, Proceedings of the IEEE, 86(12), 1994, 2473–2474.
  44. [44] P.P. Khargonekar and M.A. Rotea, Mixed H2/H∞ control: Aconvex optimization approach, IEEE Transactions on Auto-matic Control, 39, 1991, 824–837.
  45. [45] P. Gahinet, Explicit controller formulas for LMI-based H∞synthesis, Automatica, 32(7), 1996, 1007–1014.
  46. [46] M. Chilali and P. Gahinet, H∞ design with pole placementconstraints: An LMI approach, Proc. 33th IEEE Conf. onDecision and Control, Lake Buena Vista, FL, USA, 1994,358–367.
  47. [47] S. Li, J. Li, G. Hua, and H. Shang, Variable stiffness control forSEAs in rehabilitation training, Advanced Robotics, 33(7–8),2019, 424–438.

Important Links:

Go Back