Amenosis J.R. Lopez-Arreguin and Enrico Stolloın
[1] B. Siliciano and K. Oussama, Springer handbook of robotics, 2nd ed., (Secaucus, NJ: Springer-Verlag, 2007), 1271–1272. [2] J. Li, B. Dai, X. Li, et al., An interaction-aware predictive motion planner for unmanned ground vehicles in dynamic street scenarios, International Journal of Robotics and Automation, 34, 2019. [3] M.H. Amoozgar, S.H. Sadati, and K. Alipour, Trajectory tracking of wheeled mobile robots using a kinematical fuzzy controller, International Journal of Robotics & Automation, 27(1), 2012. [4] N. Britton, J. Walter, Y. Kazuya, S. Toshiro, P. Tomaso, and N. Kei, Four wheel rover performance analysis at lunar analog test, Field and Service Robotics: Result of the 10th International Conf., Springer International Publishing, Toronto, Canada 2006, 361–371. [5] D. Wettergreen, S. Moreland, K. Skonieczny, D. Jonak, D. Kohanbash, and J. Teza, Design and field experimentation of a prototype Lunar prospector, International Journal of Robotics Research, 29(12), 2010, 1550–1564. [6] M. Sutoh, K. Nagaoka, K. Nagatani, and K. Yoshida, Design of wheels with grousers for planetary rovers traveling over loose soil, Journal of Terramechanics, 50(5–6), 2013, 5–6. [7] M. Sutoh, K. Nagatani, and K. Yoshida, Evaluation of influence of surface shape of wheel on traveling performance of planetary rovers over slope, Proc. 17th ISTVS International Conf., Virginia, USA, 2011. [8] L. Ding, H. Gao, Z. Deng, K. Nagatani, and K. Yoshida, Experimental study and analysis on driving wheel’s performance for planetary exploraion rovers moving in deformable soil, Journal of Terramechanics, 48(1), 2011, 27–45. [9] L. Ding, K. Yoshida, K. Nagatani, H. Gao, and Z. Deng, Parameter identification for planetary soil based on a decoupled analytical wheel-soil interaction terramechanics model, IEEE/RSJ International Conf. on Intelligent Robots and Systems (IROS), Missouri, USA, 2009. [10] L. Ding, Z. Deng, H. Gao, K. Nagatani, and K. Yoshida, Planetary rovers’ wheel – soil interaction mechanics: New challenges and applications for wheeled mobile robots, Intelligent Service Robotics, 4(1), 2011, 17–38. [11] T. Shirai and G. Ishigami, Development of in-wheel sensor system for accurate measurement of wheel terrain interaction characteristics, Journal of Terramechanics, 62(Suppl. C), 2015, 51–61. [12] E. Hegedus, Pressure distribution under rigid wheels, Transactions of the ASAE, 8(3), 1965, 305–308. [13] G. Krick, Radial and shear stress distribution beneath rigid wheels and pneumatic tyres on yielding soils with regard to tyre deformation, Journal of Terramechanics, 6(3), 1969, 73–98. [14] C. Senatore and K. Iagnemma, Analysis of stress distributions under lightweight wheeled vehicles, Journal of Terramechanics, 51, 2014, 1–17. [15] S. Higa, K. Sawada, K. Teruya, K. Nagaoka, and K. Yoshida, Three-dimensional stress distribution of a rigid wheel on lunar regolith simulant, ISARIAS, Beijing, China, 2016. [16] S. Higa, K. Nagaoka, K. Nagatani, and K. Yoshida, Measurement and modeling for two-dimensional normal stress distribution of wheel on loose soil, Journal of Terramechanics, 62, 2015, 63–73. [17] A. Oida, A. Satoh, H. Itoh, and K. Triratanasirichai, Three-dimensional stress distributions on a tire-sand contact surface, Journal of Terramechanics, 28(4), 1991, 319–330. [18] K. Nagatani, A. Ikeda, K. Sato, and K. Yoshida, Accurate estimation of drawbar pull of wheeled mobile robots traversing sandy terrain using built-in force sensor array wheel, 2009 IEEE/RSJ International Conf. on Intelligent Robots and Systems, Missouri, USA, 2009. [19] K. Iizuka, T. Sasaki, S. Suzuki, T. Kawamura, and T. Kubota, Study on grouser mechanism to directly detect sinkage of wheel during traversing loose soil for lunar exploration rovers, ROBOMECH Journal, 1(1), 2004, 15. [20] K. Iizuka, T. Sasaki, M. Yamano, and T. Kubota, Development of grousers with a tactile sensor for wheels of lunar exploration rovers to measure sinkage, International Journal of Advanced Robotic Systems, 11(3), 2014, 49. [21] S. Higa, K. Sawada, K. Nagaoka, K. Nagatani, and K. Yoshida, Measurement of stress distributions of a wheel with grousers, IEEE International Conf. on Robotics and Automation (ICRA), 2016, Stockholm, Sweden, 2016. [22] K. Iizuka, T. Kubota, and T. Kubota, Measurement of stress distribution of flexible wheels for lunar rover, 41st International Symp. on and 2010 6th German Conf. on Robotics (ROBOTIK), Munich, Germany, 2010. [23] S. Narita, M. Otsuki, S. Wakabayashi, and S. Nishida, Terramechanics evaluation of low-pressure wheel on deformable terrain, 2011 IEEE International Conf. on Robotics and Automation (ICRA), Shanghai, China, 2011. [24] S.E. Shamay, Normal and shear stress distribution under a rigid wheel in dry sand, Stevens Institute of Tech Hoboken NJ Davidson Lab, Washington DC, USA, 1971. 423 [25] T. Kasetani, H. Nakashima, H. Shinone, H. Shimizu, J. Miyasaka, and K. Ohdoi, Tri-axial contact reaction at the tire-soil interface, Engineering in Agriculture, Environment and Food, 3(1), 2010, 14–19. [26] S. Higa, K. Sawada, K. Nagaoka, K. Nagatani, and K. Yoshida, Three-dimensional stress distribution on a rigid wheel surface for a lightweight vehicle, In Proceedings of the 13th European Conference of the ISTVS, 2015, 383–391.
Important Links:
Go Back