ROLES OF MAGNETIC STRENGTH IN MAGNETO-ELASTOMER TOWARDS SWIMMING MECHANISM AND PERFORMANCE OF MINIATURE ROBOTS, 162-170.

Laliphat Manamanchaiyaporn, Tiantian Xu, Xinyu Wu, and Huihuan Qian

References

  1. [1] B.J. Nelson, I.K. Kaliakatsos, and J.J. Abbott, Microrobots for minimally invasive medicine, Annual Review of Biomedical Engineering, 12(1), 2010, 55–85.
  2. [2] T. Xu, Y. Guan, J. Liu, and X. Wu, Image-based visual serving of helical microswimmers for planar path following, IEEE Transactions on Automation Science and Engineering, 2019, 1–9.
  3. [3] R. Nosrati, A. Driouchi, C.M. Yip, and D. Sinton, Two- dimensional slither swimming of sperm within a micrometre of a surface, Nature Communications, 6, 8703, 2015.
  4. [4] J. Gray and G.J. Hancock, The propulsion of sea-urchin spermatozoa, The Journal of Experimental Biology, 1955, 802.
  5. [5] G. Taylor, Analysis of the swimming of microscopic organ- isms, Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 209, 1951, 1099.
  6. [6] T. Xu, J. Yu, C. Vong, B. Wang, and X. Wu, Dynamic morphology and swimming properties of rotating miniature swimmers with soft tails, IEEE/ASME Transactions on Mechatronics, 24(3), 2019, 924–934.
  7. [7] S. Palagi and P. Fischer, Bioinspired microrobots, Nature Reviews Materials, 3, 2018, 113.
  8. [8] T. Xu, G. Hwang, N. Andreff, and S. Regnier, Modeling and swimming property characterizations of scaled-up helical microswimmers, IEEE/ASME Transactions on Mechatronics, 19(3), 2014, 1069–1079.
  9. [9] H. Huang, M.S. Sakar, A.J. Petruska, S. Pane, and B.J. Nelson, Soft micromachines with programmable motility and morphology, Nature Communications, 7, 2016, 12263.
  10. [10] I.S.M. Khalil, A.F. Tabak, A. Klingner, and M. Sitti, Magnetic propulsion of robotic sperms at low-Reynolds number, Applied Physics Letters, 109, 2016, 033701-1-5. 169
  11. [11] E.M. Purcell, Life at low Reynolds number, American Journal of Physics, 45, 1977, 3–11.
  12. [12] T. Qiu, T.C. Lee, A.G. Mark, et al., Swimming by reciprocal motion at low Reynolds number, Nature Communications, 25, 2014, 514–519.
  13. [13] M. Sitti, Miniature soft robots – Road to the clinic, Nature Reviews Materials, 3, 2018, 74–75.
  14. [14] W. Zhu, J. Li, Y.J. Leong, et al., 3D-printed artificial microfish, Advanced Materials, 27, 2015, 4411–4417.
  15. [15] E. Gultepe, J.S. Randhawa, S. Kadam, et al., Biopsy with thermally-responsive untethered microtools, Applied Physics Letters, 25, 2013, 514–519.
  16. [16] O. Felfoul, M. Mohammadi, S. Taherkhani, et al., Magneto- aerotactic bacteria deliver drug-containing nanoliposomes in tumour hypoxic regions. Nature Nanotechnology, 11, 2016, 941–947.
  17. [17] H. Banerjee, Z.T.H. Tse, and H. Ren, Soft robotics with compliance and adaptation for biomedical applications and forthcoming challenges, International Journal of Robotics and Automation, 33(1), 2018, 69–80.
  18. [18] D. Rus and M.T. Tolley, Design, fabrication and control of soft robots, Nature, 521, 2015, 467–475.
  19. [19] M. Cianchetti, C. Laschi, A. Menciassi, and P. Dario, Biomedical applications of soft robotics, Nature Reviews Materials, 3, 2018, 143–153.
  20. [20] E. Diller, J. Zhuang, G.Z. Lum, M.R. Edwards, and M. Sitti, Continuously distributed magnetization profile for millimeter- scale elastomeric adulatory swimming, Applied Physics Letters, 104, 2014, 174101-1-5.
  21. [21] G.Z. Lum, Y. Zhou, X. Dong, et al., Shape-programmable magnetic soft matter, Proceedings of the National Academy of Sciences of the United States of America, 113(41), 2016, 6007–6015.
  22. [22] W. Hu, G.Z. Lum, M. Mastrangeli, and M. Sitti, Small-scale soft-bodied robot with multimodal locomotion, Nature, 554, 2018, 81–85.
  23. [23] L. Manamanchaiyaporn, T. Xu, and X. Wu, The HyBrid system with a large workspace towards magnetic micromanipulation within the human head, IEEE/RSJ Int’l. Conf. Intel. Rob. Sys., Canada, 2017, 402–407.
  24. [24] N.A. Spaldin, Magnetic materials fundamentals and applications, 2nd ed. (USA: Cambridge University Press, 2010).
  25. [25] Z. Cui, H. Jiang, Design and implementation of thunniform robotic fish with variable body stiffness, International Journal of Robotics and Automation, 32(2), 2017, 109–116.
  26. [26] B.J. Gemmell, S.P. Colin, J.H. Costello, and J.O. Dabiri, Suction-based propulsion as a basis for efficient animal swimming, Nature Communications, 6, 2015, 8790–8798.

Important Links:

Go Back