CONSENSUS TRACKING FOR NONLINEAR FRACTIONAL-ORDER MULTI-AGENT SYSTEMS USING ADAPTIVE SLIDING MODE CONTROLLER, 194-200.

Zahra Yaghoubi and Heidar A. Talebi

References

  1. [1] Q. Hui and W.M. Haddad, Distributed nonlinear controlalgorithms for network consensus, Automatica, 44(9), 2008,2375–2381.
  2. [2] G. Wen, G. Hu, W. Yu, J. Cao, and G. Chen, Consensustracking for higher-order multi-agent systems with switchingdirected topologies and occasionally missing control inputs,Systems & Control Letters, 62(12), 2013, 1151–1158.
  3. [3] Y.V. Karteek, I. Kar, and S. Majhi, Consensus of multi-agentsystems using back-tracking and history following algorithms,International Journal of Robotics and Automation, 32(4), 2017.
  4. [4] H. Wang, L. Ji, and Z. Zhou, ESO-based consensus of multipleEuler-Lagrange systems under a fixed or switching topology,Control and Intelligent Systems, 45(2), 2017.
  5. [5] Y. Cao and W. Ren, Distributed coordinated tracking withreduced interaction via a variable structure approach, IEEETransactions on Automatic Control, 57(1), 2012, 33–48.
  6. [6] W. Ren and Y. Cao, Distributed coordination of multi-agentnetworks. Communications and control engineering series(London: Springer-Verlag, 2011).
  7. [7] I. N’Doye, M. Darouach, M. Zasadzinski, and N.-E. Radhy,Robust stabilization of uncertain descriptor fractional-ordersystems, Automatica, 49(6), 2013, 1907–1913.
  8. [8] H. Delavari, D. Baleanu, and J. Sadati, Stability analysis ofCaputo fractional-order nonlinear systems revisited, NonlinearDynamics, 67(4), 2012, 2433–2439.
  9. [9] J. Yu, H. Hu, S. Zhou, and X. Lin, Generalized Mittag-Lefflerstability of multi-variables fractional order nonlinear systems,Automatica, 49(6), 2013, 1798–1803.
  10. [10] Y.-H. Lan, H.-B. Gu, C.-X. Chen, Y. Zhou, and Y.-P. Luo,An indirect Lyapunov approach to the observer-based robustcontrol for fractional-order complex dynamic networks, Neurocomputing, 136, 2014, 235–242.
  11. [11] G. Wen, Z. Peng, A. Rahmani, and Y. Yu, Distributed leader-following consensus for second-order multi-agent systems withnonlinear inherent dynamics, International Journal of SystemsScience, 45(9), 2014, 1892–1901.
  12. [12] S. Shoja-Majidabad, H. Toosian-Shandiz, and A. Hajizadeh,Robust fractional-order control of PMSG-based WECS, International Journal of Automation and Control, 9(2), 2015,107–129.
  13. [13] C. Yin, Y. Chen, and S.-m. Zhong, Fractional-order slidingmode based extremum seeking control of a class of nonlinearsystems, Automatica, 50(12), 2014, 3173–3181.
  14. [14] X. Yin and S. Hu, Consensus of fractional-order uncertainmulti-agent systems based on output feedback, Asian Journalof Control, 15(5), 2013, 1538–1542.
  15. [15] Z. Yu, H. Jiang, and C. Hu, Leader-following consensusof fractional-order multi-agent systems under fixed topology,Neurocomputing, 149, 2015, 613–620.
  16. [16] Y. Cao and W. Ren, Distributed formation control forfractional-order systems: Dynamic interaction and absolute/relative damping, Systems & Control Letters, 59(3–4), 2010,233–240.
  17. [17] R. Dong, Consensus tracking for multiagent systems withnonlinear dynamics, The Scientific World Journal, 2014, 2014,1–10.
  18. [18] G.-H. Xu, M. Chi, D.-X. He, Z.-H. Guan, D.-X. Zhang, andY. Wu, Fractional-order consensus of multi-agent systems withevent-triggered control, 11th IEEE International Conferenceon Control & Automation (ICCA), IEEE, 2014, 619–624.
  19. [19] Z. Li, Z. Duan, G. Chen, and L. Huang, Consensus of multiagentsystems and synchronization of complex networks: A unifiedviewpoint, IEEE Transactions on Circuits and Systems I:Regular Papers, 57(1), 2010, 213–224.
  20. [20] P. DeLellis, M. Di Bernardo, T.E. Gorochowski, and G. Russo,Synchronization and control of complex networks via contraction, adaptation and evolution, IEEE Circuits and SystemsMagazine, 10(3), 2010, 64–82.
  21. [21] G. Ren and Y. Yu, Consensus of fractional multi-agent systemsusing distributed adaptive protocols, Asian Journal of Control,19(6), 2017, 2076–2084.
  22. [22] Y. Li, Y. Chen, and I. Podlubny, Stability of fractional-ordernonlinear dynamic systems: Lyapunov direct method andgeneralized Mittag–Leffler stability, Computers & Mathematicswith Applications, 59(5), 2010, 1810–1821.
  23. [23] N. Aguila-Camacho, M.A. Duarte-Mermoud, and J.A. Gallegos, Lyapunov functions for fractional order systems, Communications in Nonlinear Science and Numerical Simulation,19 (9), 2014, 2951–2957.
  24. [24] J. Bai, G. Wen, A. Rahmani, and Y. Yu, Distributed consensustracking for the fractional-order multi-agent systems based onthe sliding mode control method, Neurocomputing, 235, 2017,210–216.

Important Links:

Go Back