ADHESION TECHNOLOGIES OF BIO-INSPIRED CLIMBING ROBOTS: A SURVEY

Priyabrata Chattopadhyay and Sanjoy K. Ghoshal

References

  1. [1] M.F. Silva, J.A.T. Machado, and J.K. Tar, A survey of technologies for climbing robots adhesion to surfaces, IEEE 6th International Conf. on Computational Cybernetics (ICCC), Slovakia, 2008, 127–132.
  2. [2] M.F. Silva and J.A.T. Machado, Climbing robots: A survey of technologies and applications, WSPC – Proceedings CLAWAR Climbing Robots, 16(7), 2008.
  3. [3] Q.D. Wu, C.J. Liu, J.Q. Zhang, and Q.J. Chen, Survey of locomotion control of legged robots inspired by biological concept, Science in China Series F-Information Sciences, 52(10), 2009, 1715–1729.
  4. [4] B. Chu, K. Jung, C.S. Han, and D. Hong, A survey of climbing robots: Locomotion and adhesion, Journal of Precision Engineering and Manufacturing, 11(4), 2010, 633–647.
  5. [5] D. Schmidt and K. Berns, Climbing robots for maintenance and inspections of vertical structures – A survey of design aspects and technologies, Robotics and Autonomous Systems, 12(61), 2013, 1288–1305.
  6. [6] M. Tavakoli and C. Viegas, Bio-inspired climbing robots, Biomimetic Technologies, 2015(4), 301–320.
  7. [7] Y. Li, J. Krahn, and C. Menon, Bioinspired dry adhesive materials and their application in robotics: A review, Journal of Bionic Engineering, 13(2), 2016, 181–199.
  8. [8] A. Nagakubo and S. Hirose, Walking and running of the quadruped wall climbing robot, IEEE Proc. of International Conf. on Robotics and Automation, 2, 1994, 1005–1012.
  9. [9] J. Grieco, M. Prieto, M. Armada, and P. Santos, A six-legged climbing robot for high payloads, Proc. of International Conf. on Control Applications (CCA), Italy, 1998, 446–450.
  10. [10] B.L. Luk, D.S. Cooke, S. Galt, A. Collie, et al., Intelligent legged climbing service robot for remote maintenance applications in hazardous environments, Journal of Robotics and Autonomous Systems, 53, 2005, 142–152.
  11. [11] D. Longo and G. Muscato, A modular approach for the design of the alicia3 climbing robot for industrial inspection, Industrial Robot: An International Journal, 31(2), 2004, 148–158.
  12. [12] A. Nishi and H. Miyagi, Mechanism and control of propeller type wall-climbing robot, Proc. of IEEE/RSJ International Conf. on Intelligent Robots and Systems, Munich, 1994, 1724– 1729.
  13. [13] L. Illingworth and D. Reinfeld, Vortex attractor for planar and non-planar surfaces, US Patents 6619922, September, 2003.
  14. [14] J.Z. Xiao, A. Sadegh, M. Elliot, et al., Design of mobile robots with wall climbing capability, Proc. IEEE/ASME International Conf. on Advanced Intelligent Mechatronics, USA, 2005, 438– 443.
  15. [15] D. Longo and G. Muscato, Adhesion techniques for climbing robots: State of the art and experimental considerations, 11th International Conf. Climbing and Walking Robots and the Support Technologies for Mobile Machines, Portugal, 2008.
  16. [16] M. Sadeghi and A. Moradi, Design and fabrication of a column climbing robot, Mechanical, Industrial and Aerospace Engineering, 2, 2008, 220–225.
  17. [17] M. Tavakoli, L. Marques, and A.T. de Almeida, Development of an industrial pipeline inspection robot, Industrial Robot: International Journal, 37(3), 2010, 309–322.
  18. [18] H. Amano, K. Osuka, and T. Tarn, Development of vertically moving robot with gripping handrails for fire fighting, IEEE/RSJ International Conf. on Intelligent Robots and Systems, USA, 2001.
  19. [19] A.T. Asbeck, S. Kim, M.R. Cutkosky, W.R. Provancher, et al., Scaling of hard vertical surfaces with compliant microspine arrays, International Journal of Robotics Research, 25(12), 2006, 1165–1179.
  20. [20] M.J. Spenko, G. Haynes, J.A. Saunders, M.R. Cutkosky, et.al., Biologically inspired climbing with hexapedal robot, Journal of Field Robotics, 25(4–5), 2008, 223–242.
  21. [21] G. Haynes, A. Khirpin, G. Lynch, J. Amory, et al., Rapid pole climbing with a quadrupedal robot, Proc. of the IEEE International Conf. on Robotics and Automation, Kobe, 2009, 2767–2772.
  22. [22] A. Sintov, T. Avramovich, and A. Shapiro, Design and motion planning of autonomous climbing robot with claws, The Journal of Robotics and Autonomous Systems, 59, 201, 1008–1019.
  23. [23] P. Birkmeyer, A.G. Gillies, and R.S. Fearing, Dynamic climbing of near-vertical smooth surfaces, IEEE International Conf. on Intelligent Robots and Systems, Portugal, 2012, 286–292.
  24. [24] Y. Liu, S. Sun, X. Wu, and T. Mei, A wheeled wall-climbing robot with bio-inspired spine mechanisms, Journal of Bionic Engineering, 12(1), 2015, 17–28.
  25. [25] F. Xu, B. Wang, J. Shen, J. Hu, and G. Jiang, Design an realization of the claw gripper system of a climbing robot, Journal of Intelligent Robot System, 2017, doi 10.1007/s10846017-0552-3.
  26. [26] J. Clark, D. Goldman, P.C. Lin, G. Lynch, et al., Design of a bio-inspired dynamical vertical climbing robot, Robotics: Science and Systems, 2007.
  27. [27] G.A. Lynch, J.E. Clark, P.C. Lin, and D.E. Koditschek, A bioinspired dynamical vertical climbing robot, The International Journal of Robotics Research, 31(8), 2012, 974–996.
  28. [28] B. Kennedy, A. Okon, H. Aghazarian, M. Badescu, et al., LEMUR IIb: A robotic system for steep terrain access, Industrial Robot: An International Journal, 33(4), 2006, 265–269.
  29. [29] W.R. Provancher, S.J. Segal, and M.A. Fehlberg, ROCR: An energy-efficient dynamic wall-climbing robot, IEEE/ASME Transactions on Mechatronics, 16(5), 2011, 897–906.
  30. [30] T. Libby, T.Y. Moore, E. Chang-Siu, D. Li, et al., Tail assisted pitch control in lizards, Robots and Dinosaurs, Nature, 481, 2012, 181–184.
  31. [31] Y. Zhu, X. Sun, and X. Wang, Locomotion system design and dynamics analysis of a new telescopic miniature in-pipe robot, International Journal of Robotics and Automation, 31(2), 2016.
  32. [32] S. Gorb, Attachment devices of insect cuticle, 9–19, ISBN: 978-0-7923-7153-3.
  33. [33] M.R.S Noorani, A. Ghanbari, and S. Aghli, Design and fabrication of a worm robot prototype, Proc. 3rd RSI International Conf. on Robotics and Mechatronics, Iran, 2015.
  34. [34] R.L. Tummala, R. Mukherjee, N. Xi, D. Aslam, et al., Climbing the walls—Presenting two underactuated kinematic designs for miniature climbing robots, IEEE Robotics and Automation Magazine, 9(4), 2002, 10–19.
  35. [35] C. Balaguer, A. Gimenez, and M. Abderrahim, ROMA robots for inspection of steel based infrastructures, Industrial Robot, 29(3), 2002, 246–251.
  36. [36] B.L. Luk, D.S. Cooke, S. Galt, et al., Intelligent legged climbing service robot for remote maintenance applications in hazardous environments, Robotics and Autonomous Systems, 53, 2005, 142–152.
  37. [37] Y. Guan, H. Zhu, W. Wu, X. Zhou, et al., A modular biped wallclimbing robot with high mobility and manipulating function, IEEE/ASME Transactions on Mechatronics, 2013(18), 2012, 1787–1798.
  38. [38] J. Li, X. Gao, N.Fan, K.Li, et al., Adsorption perforemance of sliding wall-climbing robot, Chienese Journal of Mechanical Engineering, 23, 2010.
  39. [39] C. Hillenbrand, D. Schmidt, and K. Berns, Cromsci – A climbing robot with multiple sucking chambers for inspection tasks, Proc. 11th International Conf. on Climbing and Walking Robots and the Support Technologies for Mobile Machine, Portugal, 2008, 311.
  40. [40] W. Wang, K. Wang, and H. Zhang, Crawling gait realization of the mini-modular climbing caterpillar robot, Progress in Natural Science, 19, 2009, 1821–1829.
  41. [41] B. Hu, L. Wang, Y. Zhao, and Z. Fu, A miniature wall climbing robot with biomechanical suction cups, Industrial Robot: An International Journal Emerald Publication, 36(6), 2009, 551–556.
  42. [42] K. Wang, W. Wang, and H. Zhang, Analysis and design of attachment module based on sine vibrating suction method for wall-climbing robot, SREE Conf. on Engineering, Modeling and Simulation Procedia Engineering, HongKong, 12, 2011, 9–14.
  43. [43] M.A.K. Jaradat, S.M. Ashour, A.A. Matalkh, M.M. Elayyan, et al., Biologically inspired design of a glass climbing robot for remote services, International Journal of Robotics and Automation, 25(2), 2010.
  44. [44] T. Hayakawa, T. Nakamura, and H. Suzuki, Development of a wave propagation type wall-climbing robot using a fan and slider cranks, Proc. 12th International Conf. of Climbing and Walking Robots, Turkey, 2009, 439–446.
  45. [45] Z. Xu and P. Ma, A wall-climbing robot for labelling scale of oil tank’s volume, Robotica, 20(2), 2002, 209–212.
  46. [46] J. Sánchez, F. Vázquez, and E. Paz, Machine vision guidance system for a modular climbing robot used in shipbuilding, in M.O. Tokhi, G.S. Virk, and M.A. Hossain (eds.), Climbing and walking robots (CLWAR) (Springer, 2006), 893–900.
  47. [47] M. Tavakoli, C. Viegas, L. Marques, J.N. Pires, et al., Omniclimbers: Omni-directional magnetic wheeled climbing robots for inspection of ferromagnetic structures, Robotics and Autonomous Systems, 61(9), 2013, 997–1007.
  48. [48] F. Tache, W. Fischer, G. Caprari, R. Siegwart, et al., Magnebike: A magnetic wheeled robot with high mobility for inspecting complex-shaped structures, Journal of Field Robotics, 26(5), 2009, 453–476.
  49. [49] K. Kotay and D. Rus, Inchworm robot: A multi-functional system, Autonomous Robots, 8, 2000, 53–69.
  50. [50] F. Rochat, R. Beira, H. Bleuler, and F. Mondad, Tremo: An inspection climbing inchworm based on magnetic switchable device, International Conf. on Climbing & Walking Robots, France, 2011, 415–422.
  51. [51] K. Gilpin, K. Kotay, D. Rus, and I. Vasilescu, Miche: Modular shape formation by self-disassembly, The International Journal of Robotics Research, 27, (3–4), 2008, 345–372.
  52. [52] J.C. Romao, M. Tavakoli, C. Viegas, P. Neto, et al., Inchworm Climber: A light-weight biped climbing robot with a switchable magnet adhesion unit, IEEE/RSJ International Conf. on Intelligent Robots and Systems, Hamburg, 2015.
  53. [53] C. Yan, Z. Sun, W. Zhang, and Q. Chen, Design of novel multidirectional magnetized permanent magnetic adsorption device for wall-climbing robots, International Journal of Precision Engineering and Manufacturing, 17(7), 2016, 871–878.
  54. [54] J. Sun, Z. Ju, and H. Ren, Finite element simulation of a passive magnetic robotic system, International Journal of Robotics and Automation, 32(1), 2017.
  55. [55] S.N. Gorb, M. Sinha, A. Peressadko, K.A. Daltorio, and R.D. Quinn, Insects did it first micro patterned adhesive tape for robotic applications, Bioinspiration & Biomimetics, 2, 2007, 117–125.
  56. [56] G.K. Ellem, J.E. Furst, and K.D. Zimmerman, Shell clamping behaviour in the limpet Cellana tramoserica, Journal of Experimental Biology, 205, 2002, 539–547.
  57. [57] D.K. Riskin and P.A. Racey, How do sucker-footed bats hold on, and why do they roost head-up? Biological Journal of the Linnean Society, 99, 2010, 233–240.
  58. [58] T. Miyake, H. Ishihara, and M. Yoshimura, Basic studies on wet adhesion system for wall climbing robots, IEEE/RSJ International Conf. on Intelligent Robots and Systems, San Diego, 2007.
  59. [59] K.A. Daltorio, T.E. Wei, A.D. Horchler, L. Southard, et al., Mini-WhegsTM climbs steep surfaces using insect-inspired attachment mechanisms, International Journal of Robotics Research, 28, 2009, 285.
  60. [60] C. Menon, M. Murphy, and M. Sitti, Gecko inspired surface climbing robots, IEEE Proc. of the International Conf. on Robotics and Biomimetics, 2004, 23–25.
  61. [61] C. Menon and M. Sitti, A biomimetic climbing robot based on the Gecko, Journal of Bionic Engineering, 3, 2006, 115–125.
  62. [62] O. Unver, A Uneri, A. Aydemir, and M. Sitti, Geckobot: A gecko inspired climbing robot using elastomer adhesives, Proc. IEEE International Conf. on Robotics and Automation, Florida, 2006, 2329–2335.
  63. [63] B. Aksak, M.P. Murphy, and M. Sitti, Gecko inspired microfibrillar adhesives for wall climbing robots on micro/nanoscale rough surfaces, IEEE International Conf. on Robotics and Automation, Pasadena, 2008, 3058–3063.
  64. [64] S. Kim, M. Spenko, S. Trujillo, B. Heyneman, et al., Smooth vertical surface climbing with directional adhesion, IEEE Transactions on Robotics, 24(1), 2008, 65–74.
  65. [65] M.P. Murphy and M. Sitti, Waalbot: An agile small-scale wallclimbing robot utilizing dry elastomer adhesives, IEEE/ASME Transactions on Mechatronics, 12(3), 2007, 330–338.
  66. [66] M.P. Murphy, C. Kute, Y. Men˘gü¸c, and M. Sitti, Waalbot II: Adhesion recovery and improved performance of a climbing robot using fibrillar adhesives, The International Journal of Robotics Research, 30(1), 2011, 118–133.
  67. [67] O. Unver and M. Sitti, Tankbot: A palm-size, tank-like climbing robot using soft elastomer adhesive treads, The International Journal of Robotics Research, 29(14), 2010, 1761–1777.
  68. [68] Z. Yu, B. Yang, S. Yang, and Z. Dai, Vertical climbing locomotion of a new gecko robot using dry adhesive material, International Journal of Robotics and Automation, 32, 2017.
  69. [69] H. Ko, H. Yi, and H.E. Jeong, Wall and ceiling climbing quadruped robot with superior water repellency manufactured using 3D printing (UNIclimb), International Journal of Precision Engineering and Manufacturing-Green Technology, 4(3), 2017, 273–280.
  70. [70] A. Shapiro, I. Mahpoda, and H. Zuk, A snail inspired wall climbing robot for counter terrorism duty, 30th Israeli Conf. on Mechanical Engineering, Tel Aviv, 2005.
  71. [71] M. Osswald and F. Iida, A climbing robot based on hot melt adhesion, International Conf. on Intelligent Robots and Systems, USA, 2011.
  72. [72] L. Wang, L. Graber, and F. Iida, Large-payload climbing in complex vertical environments using thermoplastic adhesive bonds, IEEE Transactions on Robotics, 29(4), 2013.

Important Links:

Go Back