Ruiqiang Zhao, Hong Zhang, Leng Liao, Jianting Zhou, Huixiang Ma, and Zhigang Li
[1] V.D. Tran, M. Oudjene, and P.J. Measoone, Experimental investigation on full-scale glued oak solid timber beams for structural bearing capacity, Construction and Building Materials,123, 2016, 365–371. [2] J.P. Sandifer and G.E. Bowie, Residual stress by blind-holemethod with off-center hole, Experimental Mechanics, 18(5),1978, 173–179. [3] P.J. Guo, X.D. Chen, W.H. Guan, et al., Effect of tensile stresson the variation of magnetic field of low-alloy steel, Journal ofMagnetism and Magnetic Materials, 323, 2011, 2474–2477. [4] L.H. Dong, B.S. Xu, S.Y. Dong, et al., Variation of stress-induced magnetic signals during tensile testing of ferromagneticsteels, NDT & E International, 41, 2008, 184–189. [5] N.S. Rossini, M. Dassisti, K.Y. Benyounis, et al., Methodsof measuring residual stresses in components, Materials &Design, 35, 2012, 572–588. [6] T. Felipe, E. Khomenko, and M. Collados, Magneto-acousticwaves in sunspots: First results from a new three-dimensionalnonlinear magnetohydrodynamic code, Astrophysical Journal,719(1), 2010, 357–377. [7] D.Q. Zhou, M. Pan, Y.Z. He, et al., Stress detection andmeasurement in ferromagnetic metals using pulse electromagnetic method with U-shaped sensor, Measurement, 105, 2017,136–145. [8] A.A. Doubov, A study of metal properties using the method ofmagnetic memory, Metal Science and Heat Treatment, 39(9),1997, 401–405. [9] A.A. Doubov, Screening of weld quality using the metalmagnetic memory effect, Welding in the World, 41, 1998,196–199. [10] S.L. Huang, L.M. Li, X.F. Wang, and K.R. Shi, Novel NDT testmethod for stress concentrations and fatigue cracks, MaterialsTechnology, 18(3), 2003, 149–150. [11] M.M. Moghaddm, M. Arbabtafti, and A. Hadi, In-pipe inspection crawler adaptable to the interior diameter, InternationalJournal of Robotics and Automation, 206(2), 2011, 3078. [12] C.C. Li, L.H. Dong, H.D. Wang, G.L. Li, and B.S. Xu, Metalmagnetic memory technique used to predict the fatigue crackpropagation behavior of 0.45%C steel, Journal of Magnetismand Magnetic Materials, 405, 2016, 150–157. [13] M. Roskosz, A. Rusin, and J. Kotowicz, The metal magnetic memory method in the diagnostics of power machinery components, Journal of Achievements in Materials andManufacturing Engineering, 43(1), 2010, 362–370. [14] Z.D. Wang, Y. Gu, and Y.S. Wang, A review of three magnetic NDT technologies, Journal of Magnetism and MagneticMaterials, 324(4), 2012, 383–388. [15] R. Kaushik, J.Z. Xiao, S.L. Joseph, and W. Morris, Polygon-based 3D scan registration with dual-robots in structuredindoor environments, International Journal of Robotics andAutomation, 27(1), 2012, 101. [16] J. Zhang, F.C. Tian, S.X. Yang, Y. Liu, et al., An intelligentand automatic control method for tobacco flue-curing basedon machine learning, International Journal of Robotics andAutomation, 31(6), 2016, 509–518. [17] H. Zhang, L. Liao, R.Q. Zhao, J.T. Zhou, et al., The non-destructive test of steel corrosion in reinforced concrete bridgesusing a micro-magnetic sensor, Sensors, 16(9), 2016, 1439. [18] H. Zhang, J.T. Zhou, R.Q. Zhao, et al., Experimental study ondetection of rebar corrosion in concrete based on metal magneticmemory, International Journal of Robotics and Automation,32(5), 2017, 530–537. [19] K. Yao, K. Shen, Z.D. Wang, and Y.S. Wang, Three-dimensional finite element analysis of residual magnetic fieldfor ferromagnets under early damage Journal of Magnetismand Magnetic Materials, 354, 2014, 112–118. [20] S. Chikazumi, Physics of Magnetism (New York: John Wiley& Sons, 1964).
Important Links:
Go Back