Farbod Fahimi, Swaroop Kotike, and Rahul Rameshbabu
[1] C.H. Lee, S.H. Kim, S.C. Kang, M.S. Kim, and Y.K. Kwak,Double-track mobile robot for hazardous environment appli-cations, Advanced Robotics, 17(5), 2003, 447–459. [2] Y. Go, X. Yin, and A. Bowling, Navigability of multi-leggedrobots, IEEE/ASME Transactions on Mechatronics, 11(1),2006, 1–8. [3] H. Komsuoglu, D. McMordie, U. Saranli, N. Moore, M. Buehler,and D.E. Koditschek, Proprioception based behavioral advances in a hexapod robot, Proc. of International Conf.on Robotics and Automation, Seoul, Korea, May 2001,3650–3655. [4] D. Gong and L. Xiang, Yaw control for a self-balancing unicyclerobot with two flywheels, Chinese Control Conf., CCC, Xi’an,China, 2010, 5576–5582. [5] J. Wu, Y. Liang, and Z. Wang, A robust control method oftwo-wheeled self-balancing robot, Proc. of the 6th InternationalForum on Strategic Technology, IFOST 2011, Vol. 2, Harbin,China, 2011, 1031–1035. [6] C.-C. Tsai and S.-Y. Ju, Trajectory tracking and regulation ofa self-balancing two-wheeled robot : A backstepping sliding-mode control approach, Proc. of the SICE Annual Conf.,Taipei, Taiwan, 2010, 2411–2418. [7] H. Adachi, N. Koyachi, T. Arai, A. Shimiza, and Y. Nogami,Mechanism and control of a leg-wheel hybrid mobile robot,Proc. of the 1999 IEEE/RSJ International Conf. on IntelligentRobots and Systems (IROS’99), Kyongju, Korea, Vol. 3, 2017,1792–1797. [8] S.A. Conyers, N.I. Vitzilaios, M.J. Rutherford, and K.P. Valavanis, A mobile self-leveling landing platform for VTOL UAVs,Proc. of the IEEE International Conf. on Robotics and Automation, Seattle, WA, USA, June 2015, 815–822. [9] R. Godzdanker, M.J. Rutherford, and K.P. Valavanis, IS-LANDS: A self-leveling landing platform for autonomous miniature UAVs, 2011 IEEE/ASME International Conf. on Advanced Intelligent Mechatronics (AIM), Budapest, Hungary,July 2011, 170–175. [10] K. Dalamagkidis, S. Ioannou, K. Valavanis, and E. Stefanakos,A mobile landing platform for miniature vertical take-off andlanding vehicles, 14th Mediterranean Conf. on Control andAutomation (MED’06), Athens, Greece, June 2006, 1–6. [11] N.B. Ignell, N. Rasmusson, and J. Matsson, An overview oflegged and wheeled robotic locomotion, IDT Mini-conferenceon Interesting Results in Computer Science and Engineering(IRCSE’12), Malardalen University, Sweden, 2012, pp. 1–10. [12] S. Sreenivasan and B. Wilcox, Stability and traction control ofan actively actuated micro-rover, Journal of Robotic Systems,11(6), 1994, 487–502. [13] S.V. Sreenivasan and K.J. Waldron, Displacement analysisof an actively articulated wheeled vehicle configuration withextensions to motion planning on uneven terrain, Journal ofMechanical Design, 118(2), 1996, 312–317. [14] S.H. McCloskey, Development of legged, wheeled, and hybridrover mobility models to facilitate planetary surface explorationmission analysis, Master’s Thesis, Department of Aeronauticsand Astronautics, Massachusetts Institute of Technology, 2007. [15] E.A. Poulson, J.S. Jacob, R.W. Gunderson, and B.A. Abbott, Design of a robotic vehicle with self-contained intelligentwheels, Proc. of SPIE – The International Society for OpticalEngineering, Orlando, FL, USA, Vol. 3366, 1998, 68–73. [16] Y. Yu, J. Yi, D. Zhao, and J. Zhang, Design of a cable-driven self-leveling robot, Huazhong Keji Daxue Xuebao (ZiranKexue Ban)/Journal of Huazhong University of Science andTechnology (Natural Science Edition), 36(1), 2008, 284–287. [17] G. Freitas, G. Gleizer, F. Lizarralde, L. Hsu, and N. RobinsonSalvi dos Reis, Kinematic reconfigurability control for anenvironmental mobile robot operating in the amazon rainforest, Journal of Field Robotics, 27(2), 2010, 197–216. [18] K. Iagnemma, A. Rzepniewski, S. Dubowsky, and P. Schenker,Control of robotic vehicles with actively articulated suspensionsin rough terrain, Autonomous Robots, 14(1), 2003, 5–16. [19] C. Grand, F. Benamar, F. Plumet, and P. Bidaud, Stability andtraction optimization of a reconfigurable wheel-legged robot,International Journal of Robotics Research, 23 (10–11), 2004,1041–1058. [20] J. Balchanowski, Modelling and simulation studies on themobile robot with self-leveling chassis, Journal of Theoreticaland Applied Mechanics, 54(1), 2016, 149–161. [21] J. Candiotti, H. Wang, C.-S. Chung, D.C. Kamaraj, G.G.Grindle, M. Shino, and R.A. Cooper, Design and evaluationof a seat orientation controller during uneven terrain driving,Medical Engineering and Physics, 38(3), 2016, 241–247. [22] D. Antic and S. Dimitrijevic, Fuzzy sliding mode controllerdesign for non-minimum phase systems, Control and IntelligentSystems, 27(2), 1999, 45–49. [23] S.G. Kadwane, Frequency domain approach for sliding modecontrol of DC–DC buck converter, Control and IntelligentSystems, 40(2), 2012, 102–108. [24] L. Fridman and A. Levant, Higher order sliding modes, Slidingmode control in engineering (New York: Marcel Dekker, 2002),53–101. [25] M. Defoort, T. Floquet, A. Kokosy, and W. Perruquetti, Anovel higher order sliding mode control scheme, Systems andControl Letters, 58(2), 2009, 102–108.
Important Links:
Go Back