Baohua Qiang, Zhengli Liu, Yufeng Wang, Wu Xie, Xina Shi, and Zhengjian Zhao
[1] E. Sato-Shimokawara, Y. Shinoda, T. Takatani, et al., Analysisof category estimation for cloud based chat robot, 25th IEEEInt. Symp. Robot and Human Interactive Communication, NewYork, 2016, 308–311. [2] U. Aguilera and D.L. Deusto, An architecture for automaticservice composition in MANET using a distributed servicegraph, Future Generation Computer Systems, 34, 2014, 176–189. [3] C.H. Wu and I. Paik, Toward better quality of service composition based on a global social service network, IEEE Transactions on Parallel and Distributed System, 25(6), 2015, 1466–1475. [4] F.H. Sun, J.Z. Yu, P. Zhao, and D. Xu, Tracking control of abiomimetic robotic fish guided by active vision, InternationalJournal of Robotics and Automation, 31(2), 2016, 137–145. [5] Y. Ohshima, Y. Kobayashi, T. Kaneko, and A. Yamashita,Meal support system with spoon using laser range finder andmanipulator, International Journal of Robotics and Automation, 31(3), 2016, 82–87. [6] R. Ramacher and L. Monch, Service selection with runtimeaspects: A hierarchical approach, IEEE Transaction on ServiceComputing, 8(3), 2015, 481–493. [7] H. Wang, X. Wang, X. Hu, et al., A multi-agent reinforcementlearning approach to dynamic service composition, InformationScience, 363, 2016, 96–119. [8] H.B. Wang, P.S. Ma, Q. Yu, et al., Combining quantitative constraints with qualitative preferences for effective non-functionalproperties-aware service composition, Journal of Parallel andDistributed Computing, 100, 2017, 71–84. [9] L. Li, M. Liu, and G.Q. Cheng, An local optimal model ofservice selection of Multi-QoS based on FAHP, Journal ofComputers, 38(10), 2015, 1997–2008. [10] T. Gu´erout, Y. Gaouaa, C. Artigues et al., Mixed integer linearprogramming for quality of service optimization in clouds,Future Generation Computer System, 71, 2017, 1–17. [11] A. Bekkouche, S.M. Benslimane, M. Huchard, et al., QoS-aware optimal and automated semantic web service composition with user’s constraints, Service Oriented Computing andApplications, 11(39), 2017, 1–19. [12] F. Piltan, A. Jalali, N. Sulaiman, et al., Novel artificial control ofnonlinear uncertain system: Design a novel modified PSO SISOLyapunov based fuzzy sliding mode algorithm, InternationalJournal of Robotics and Automation, 2(5), 2011, 298–312. [13] G. Rodr´ıguez, ´A. Soria, and M. Campo, Artificial intelligencein service-oriented software design, Engineering Applicationsof Artificial Intelligence, 53, 2016, 86–104. [14] A. Kheldoun, K. Barkaoui, M. Ioualalen, and D. Dahmani, Highlevel petri net modeling and analysis of flexible Web servicescomposition, Software Engineering Research, Management andApplications, 654, 2016, 163–180. [15] F. Paganelli, T. Ambra, and D. Parlanti, A QoS-aware servicecomposition approach based on semantic annotations and integer programming, International Journal of Web InformationSystem, 8(3), 2012, 296–321. [16] X. Kang, X. Liu, H. Sun, et al., Improving performance fordecentralized execution of composite Web services, Proc. ofIEEE 9th World Conf. on Services, Miami, FL, 2010, 582–589. [17] W. Zhao, X.J. Yang, B. Li, and J.F. Zhang, Semi-active fuzzyoptimal control of a vehicular multi-dimensional vibrationisolation, International Journal of Robotics and Automation,28, 2013, 245–258. [18] Y. Yu, H. Ma, and H. Zhang, An adaptive genetic programmingapproach to QoS-aware web service composition, IEEE Cong.on Evolutionary Computing, Cuncun, Mexico, 2013, 1740–1746. [19] K. Li, K. Deb, Q.F. Zhang, and S. Kwong, An evolutionarymany-objective optimization algorithm based on dominanceand decomposition, IEEE Transaction on Evolutionary Computing, 19(5), 2015, 694–716. [20] Z.Z. Liu D.H. Chu, Z.P. Jia et al. Two-stage approach forreliable Web service composition, Knowledge-Based System,97, 2016, 123–143. [21] X.Q. Fan, C.J. Jiang, J.L. Wang, and S.C. Pang, Random-QoS-aware reliable Web Service composition, Journal of Software,20(3), 2012, 546–556. [22] D.D. Wang, Y. Yang, and Z.Q. Mi, A genetic-based approach toweb service compositionin geo-distributed cloud environment,Computers and Electrical Engineering, 43, 2015, 129–141. [23] Y. Yu, H. Ma, and H. Zhang, A genetic programming approachto distributed QoS-aware web service composition, IEEE Cong.on Evolutionary Computing, Beijing, 2014, 1840–1846. [24] P. Zhao, Q.Z. Cao, N. Gu, et al., A coordinated dockingapproach based on embedded vision, International Journal ofRobotics and Automation, 31(1), 2016, 52–62. [25] T.L. Saaty, The analytic hierarchy process: Planning, prioritysetting, resources allocation (New York: McGraw-Hill Inc.). [26] B.A. Norman and J.C. Bean, A genetic algorithm methodologyfor complex scheduling problems, Naval Research Logistics,46(2), 2015, 199–211. [27] X.Y. Deng, Y. Hu, and Y. Deng, Supplier selection usingAHP methodology extended by D numbers, Expert Systemwith Applications, 41, 2014, 156–157. [28] M. Zhang, L. Liu, and S.T. Liu, Genetic algorithm basedon QoS-aware service composition in multi-cloud, Proc. of2015 IEEE Conf. on Collaboration and Internet Computing,Hangzhou, 2015, 113–118.
Important Links:
Go Back