Lei Wang and Chaomin Luo
[1] Y. Banks and S.J. Carson, Discrete-event system simulations(Englewood Cliffs, NJ: Prentice-Hall, 1984). [2] Y.L. Yin and H. Rau, Dynamic selection of sequencing rulesfor a class-based unit-load automated storage and retrievalsystem, The International Journal Advanced ManufacturingTechnology, 29(11), 2006, 1259–1266. [3] H. Rau and Y.L. Yi, Dual commands dispatching of aclass-based unit-load automated storage and retrieval systemusing multi-pass simulation with generic algorithm, The Inter-national Journal Advanced Manufacturing Technology, 33(5),2007, 530–539. [4] A. Keserla and A.B. Peters, Analysis of dual-shuttle auto-mated storage and retrieval systems, Journal of ManufacturingSystems, 13(6), 1994, 424–434. [5] N. Geng, X. Sun, D. Gong, and Y. Zhang, Solving robot pathplanning in an environment with terrains based on intervalmulti-objective PSO, International Journal of Robotics andAutomation, 31(2), 2016, 100–110. [6] L. Deng, X. Ma, J. Gu, Y. Li, Z. Xu, and Y. Wang, Artificialimmune network-based multi-robot formation path planningwith obstacle avoidance, International Journal of Robotics andAutomation, 31(3), 2016, 233–242. [7] J. Ni and S.X. Yang, A fuzzy-logic based chaos GA forcooperative foraging of multi-robots in unknown environments,International Journal of Robotics and Automation, 27(1), 2012,15–30. [8] Y. Cai and S.X. Yang, A potential-PSO approach to cooperativetarget searching of multi-robots in unknown environments,International Journal of Robotics and Automation, 28(4), 2013,357–370. [9] X. Yi, A. Zhu, S.X. Yang, and C. Luo, A bio-inspired approach to task assignment of swarm robots in 3-D dynamicenvironments, IEEE Transactions on Cybernetics, 47(4), 2017,974–983. [10] X. Yi and A. Zhu, An improved neuro-dynamics-based approachto online path planning for multi-robots in unknown dynamicenvironments, Proc. the IEEE International Conf. on Roboticsand Biomimetics (ROBIO), Shenzhen, China, 2013, 1–6. [11] L. Chen, A. Langevin, and D. Riopel, The storage locationassignment and interleaving problem in an automated stor-age/retrieval system with shared storage, International Journalof Production Research, 48(4), 2010, 991–1011. [12] C.L. Liu, H.W. Liu, and J.Y. Yang, A path planning methodbased on adaptive genetic algorithm for mobile robot, Journalof Information and Computational Science, 8(5), 2011, 808–814. [13] C.C. Tsai, H.C. Huang, and C.K. Chan, Parallel elite geneticalgorithm and its application to global path planning forautonomous robot navigation, IEEE Transactions on IndustrialElectronics, 58(10), 2011, 4813–4821. [14] H. Qu, K. Xing, and T. Alexander, An improved genetic algorithm with co-evolutionary strategy for global path planningof multiple mobile robots, Neurocomputing, 120(10), 2013,509–517. [15] S.H. Liu, Y.T. Tian, and J.F. Liu, Multi mobile robot pathplanning based on genetic algorithm, Proc. 5th World Congresson Intelligent Control and Automation, Hangzhou, China,2004, 4706–4709. [16] A. Tuncer and M. Yildirim, Dynamic path planning of mo-bile robots with improved genetic algorithm, Computers andElectrical Engineering, 38(6), 2012, 1564–1572. [17] S.M. Homayouni, S.H. Tang, and O. Motlagh, A genetic algorithm for optimization of integrated scheduling of cranes,vehicles, and storage platforms at automated container terminals, Journal of Computational and Applied Mathematics,270, 2014, 545–556. [18] F. Glover and M. Laguna, Taboo search (Dordrecht: KluwerAcademic Publisher, 1998). [19] F. Glover, T.E. Eric, and T.E. Eric, A user’s guide to taboosearch, Annals of Operations Research, 41(1), 1993, 1–28. [20] C. Luo, M. Krishnan, M. Paulik, and G.E. Jan, An effectivetrace-guided wave-front navigation and map building approachfor autonomous mobile robots, Proc. SPIE on Intelligent Robotsand Computer Vision XXXI: Algorithms and Techniques, SanFrancisco, CA, 2014, 1–10. [21] A.Y. Bozer and A.J. White, Travel-time models for automatedstorage and retrieval systems, IIE Transactions, 16(4), 1984,329–338. [22] D.R. Meller and A. Mungwatana, Multi-shuttle automatedstorage and retrieval systems, IIE Transactions, 29(10), 1997,925–938. [23] J. Borenstein and Y. Koren, High-speed obstacle avoidance formobile robots, Proc. IEEE Symposium on Intelligent Control,Arlington, VA, 1988, 382–384. [24] J. Borenstein and Y. Koren, Real-time obstacle avoidance forfast mobile robots in cluttered environments, Proc. 1990 IEEEInternational Conf. on Robotics and Automation, Cincinnati,OH, 1990, 572–577. [25] C. Luo, S.X. Yang, M. Krishnan, M. Paulik, and Y. Chen, Ahybrid system for multi-goal navigation and map building ofan autonomous vehicle in unknown environments, Proc. IEEEInternational Conf. on Robotics and Biomimetics (ROBIO),Shenzhen, China, 2013, 1228–1233. [26] I. Ulrich and J. Borenstein, VFH+: Reliable obstacle avoidancefor fast mobile robots, Proc. IEEE International Conf, onRobotics and Automation, Leuven, Belgium, 1998, 1572–1577, [27] I. Ulrich and J. Borenstein, VFH: Local obstacle avoidancewith look-ahead verification, Proc. IEEE International Conf.on Robotics and Automation, San Francisco, CA, 2000, 2505–2511. [28] C. Luo, M. Krishnan, M. Paulik, B. Cui, and X. Zhang, Anovel LIDAR-driven two-level approach for real-time unmannedground vehicle navigation and map building, Proc. SPIE onIntelligent Robots and Computer Vision XXXI: Algorithmsand Techniques, San Francisco, CA, 2014, 1–11. [29] S.W. Yu, C. Ding, and K.J. Zhu, A hybrid GA–TS algorithmfor open vehicle routing optimization of coal mines material,Expert Systems with Applications, 38(8), 2011, 10568–10573.
Important Links:
Go Back