CROSS-LAYER PARAMETERS RECONFIGURATION IN INDUSTRIAL COGNITIVE WIRELESS NETWORKS USING MOABCHV ALGORITHM

Xiaojian You, Xiaohai He, Xuemei Han, Chun Wu, and Hong Jiang

References

  1. [1] A. Willig, Recent and emerging topics in wireless industrial communications: A selection, IEEE Transactions on Industrial Informatics, 4(2), 2008, 102–124.
  2. [2] R.H. Abiyev, et al., Behavior tree based control for efficient navigation of holonomic robots, International Journal of Robotics and Automation, 29(1), 2014, 44–57.
  3. [3] L. Deng, X. Ma, J. Gu, et al., Artificial immune network-based multi-robot formation path planning with obstacle avoidance, International Journal of Robotics and Automation, 31(3), 2016, 233–242.
  4. [4] V.C. Gungor and G.P. Hancke, Industrial wireless sensor networks: Challenges, design principles, and technical approaches, IEEE Transactions on Industrial Electronics, 56(10), 2009, 4258–4265.
  5. [5] T.M. Chiwewe, C.F. Mbuya, and G.P. Hancke, Using cognitive radio for interference-resistant industrial wireless sensor networks: An overview, IEEE Transactions on Industrial Informatics, 11(6), 2015, 1466–1481.
  6. [6] T.M. Chiwewe and G.P. Hancke, Cognitiva – A cognitive industrial wireless network protocol: Protocol design and testbed implementation, IEEE Int. Conf. on Industrial Technology (ICIT), Taipei, Taiwan, 2016, 2042–2047.
  7. [7] A. Ahmad, et al., A survey on radio resource allocation in cognitive radio sensor networks, IEEE Communications Surveys & Tutorials, 17(2), 2015, 888–917.
  8. [8] S. Mannepalli, A. Dutta, and A. Saxena, A multi-objective GA based algorithm for 2D form and force closure grasp of prismatic objects, International Journal of Robotics & Automation, 25(2), 2010, 142–154.
  9. [9] G. Na, S. Xiaoyan, G. Dunwei, et al., Solving robot path planning in an environment with terrains based on interval multi-objective PSO, International Journal of Robotics & Automation, 31(2), 2016, 100–110.
  10. [10] J. Yuan and Y. Huang, Active and stable SLAM based on multi-objective optimization, International Journal of Robotics and Automation, 26(3), 2011, 313–322.
  11. [11] C.J. Rieser, Biologically inspired cognitive radio engine model utilizing distributed genetic algorithms for secure and robust wireless communications and networking (Blacksburg : Virginia Tech, 2004).
  12. [12] K. Kaur, M. Rattan, and M.S. Patterh, Biogeography-based optimisation of Cognitive Radio system, International Journal of Electronics, 101(1), 2014, 24–36.
  13. [13] X. You, X. He, X. Han, C. Wu, and H. Jiang, A novel cognitive radio decision engine based on chaotic quantum bee colony algorithm, Journal of Information and Computational Science, 12(6), 2015, 2093–2106.
  14. [14] P.M. Pradhan and G. Panda, Comparative performance analysis of evolutionary algorithm based parameter optimization in cognitive radio engine: A survey, Ad Hoc Networks, 17, 2014, 129–146.
  15. [15] D.K. Tosh, S.K. Udgata, and S.L. Sabat, Cognitive radio parameter adaptation using multi-objective evolutionary algorithm, Advances in Intelligent and Soft Computing, 130, 2012, 737–748.
  16. [16] W. Chen, T. Li, and T. Yang, Intelligent control of cognitive radio parameter adaption: Using evolutionary multi-objective algorithm based on user preference, Ad Hoc Networks, 26, 2015, 3–16.
  17. [17] H. Ishibuchi, N. Tsukamoto, and Y. Nojima, Evolutionary many-objective optimization: A short review, IEEE Cong. on Evolutionary Computation, Hong Kong, China, 2008, 2419– 2426.
  18. [18] D. Karaboga, A idea based on bee swarm for numerical optimization, Erciyes University, Kayseri, Turkey, 2005.
  19. [19] R. Akbari, R. Hedayatzadeh, K. Ziarati, et al., A multiobjective artificial bee colony algorithm, Swarm and Evolutionary Computation, 2, 2012, 39–52.
  20. [20] J.M. Lanza-Gutierrez, J.A. Gomez-Pulido, and M.A. VegaRodriguez, Intelligent relay node placement in heterogeneous wireless sensor networks for energy efficiency, International Journal of Robotics and Automation, 29(3), 2014, 274–286.
  21. [21] E. Zitzler, Evolutionary algorithms for multiobjective optimization: methods and applications, Swiss Federal Institute of Technology, Zurich, 1999.
  22. [22] N. Beume, B. Naujoks, and M. Emmerich, SMS-EMOA: Multiobjective selection based on dominated hypervolume, European Journal of Operational Research, 181(3), 2007, 1653– 1669.
  23. [23] N. Parvez, A. Mahanti, and C. Williamson, An analytic throughput model for TCP NewReno, IEEE/ACM Transactions on Networking (TON), 18(2), 2010, 448–461.
  24. [24] J. Hong, L. Cong-Bin, and W. Chun, Cross-layer parameter configuration for TCP throughput improvement in cognitive radio networks, Acta Physica Sinica, 62(3), 2013, 038804.
  25. [25] J. Bader and E. Zitzler, HypE: An algorithm for fast hypervolume-based many-objective optimization, Evolutionary Computation, 19(1), 2011, 45–76.
  26. [26] J. Bader, K. Deb, and E. Zitzler, Faster hypervolume-based search using Monte Carlo sampling, multiple criteria decision making for sustainable energy and transportation systems (Berlin Heidelberg: Springer, 2010), 313–326.
  27. [27] Y. Lu, M. Li, and L. Li, The cellular genetic algorithm with evolutionary rule, Acta Electronica Sinica, 38(7), 2010, 1603– 1607.
  28. [28] B. Akay, Synchronous and asynchronous Pareto-based multiobjective artificial bee colony algorithms, Journal of Global Optimization, 57(2), 2013, 415–445.
  29. [29] D. Gong, G. Wang, and X. Sun, Set-based evolutionary optimization algorithms integrating decision-maker’s preferences for many-objective optimization problems, Acta Electronica Sinica, 42(5), 2014, 933–939.
  30. [30] R. Arora, S.C. Kaushik, R. Kumar, et al., Multi-objective thermo-economic optimization of solar parabolic dish Stirling heat engine with regenerative losses using NSGA-II and decision making, International Journal of Electrical Power & Energy Systems, 74, 2016, 25–35.

Important Links:

Go Back