Create New Account
Login
Search or Buy Articles
Browse Journals
Browse Proceedings
Submit your Paper
Submission Information
Journal Review
Recommend to Your Library
Call for Papers
KINEMATICS ANALYSIS OF A NOVEL 2R1T PARALLEL MECHANISM
Hongyan Tang, Dan Zhang, Sheng Guo, Haibo Qu, and Guanyu Huang
References
[1] J. Herv´e and F. Sparacino, Structural synthesis of hybridrobots generating spatial translation, Proc. of the 5th IEEEInt. Conf. on Advanced Robotics, Pise, Italy, 1991, 808–813.
[2] J. Herv´e, Analyse structurelle des mecanismes par groupe desdeplacements, Mechanism and Machine Theory, 13(4), 1978,437–450.
[3] J. Herv´e, The Lie group of rigid body displacements, a fundamental tool for mechanism design, Mechanism and MachineTheory, 34(5), 1999, 719–730.
[4] Z. Huang and Q. Li, General methodology for type synthe-sis of symmetrical lower-mobility parallel manipulators andseveral novel manipulators, International Journal of RoboticsResearch, 21(2), 2002, 131–145.
[5] Z. Huang and Q. Li, Type synthesis of symmetrical lower-mobility parallel mechanisms using the constraint-synthesismethod, International Journal of Robotics Research, 22(1),2003, 59–79.
[6] B. Li, X. Yang, and Y. Hu, Structural synthesis and variationanalysis of a family of 6-DOF parallel mechanisms with threelimbs, International Journal of Robotics and Automation,25(2), 2010, 121–131.
[7] H. Qu, Y. Fang, and S. Guo, Structural synthesis of a class of3-DOF wrist mechanisms with redundantly-actuated closed-loop units, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science,230(2), 2016, 276–290.
[8] X. Kong and C. Gosselin, Type synthesis of 3-DOF spheri-cal parallel manipulators based on screw theory, Journal ofMechanical Design, 126(1), 2004, 101–108.
[9] X. Kong and C. Gosselin, Type synthesis of 3T1R 4-DOFparallel manipulators based on screw theory, Robotics andAutomation, 20(2), 2004, 181–190.
[10] X. Kong and C. Gosselin, Type synthesis of 5-DOF parallel manipulators based on screw theory, Journal of RoboticSystems, 22(10), 2005, 535–547.
[11] Q. Li and Z. Huang, Type synthesis of 4-DOF parallel manipulators, Robotics and Automation, 19(3), 2003, 755–760.
[12] Q. Li and J. Herv´e, Type synthesis of 3-DOF RPR-equivalentparallel mechanisms, Robotics, 30(6), 2014, 1333–1343.
[13] T. Yang, Kinematic structural analysis and synthesis of over-constrained spatial single-loop-chains, ASME Paper, 1986,86-DET 189.
[14] Q. Jin, T. Yang, A. Liu, H. Shen, and F. Yao, Structuresynthesis of a class of five-DOF parallel robot mechanismsbased on single-opened-chain units, ASME Paper, 2001, No.DETC/DAC 21153.
[15] M. Zoppi, L.E. Bruzzone, R.M. Molfino, and R.C. Michelini,Position analysis of a class of translational parallel mechanisms,International Journal of Robotics and Automation, 19(3), 2004,111–116.
[16] D. Zhang, F. Gao, X. Hu, and Z. Gao, Static balancingand dynamic modeling of a three-degree-of-freedom parallelkinematic manipulator, Robotics and Automation (ICRA),Shanghai, 2011, 3211–3217.
[17] C. Fan, H. Liu, and Y. Zhang, Type synthesis of 2T2R, 1T2Rand 2R parallel mechanisms, Mechanism and Machine Theory,61, 2013, 184–190.
[18] Q. Li and J. Herv´e, 1T2R parallel mechanisms without parasiticmotion, Robotics, 26(3), 2010, 401–410.
[19] B. Li, Y. Li, X. Zhao, and Y. Yang, Design and analysis of aspatial 2-RPU and SPR parallel manipulator with 1T2R-Type,Control Automation Robotics & Vision (ICARCV), Singapore,2014, 1882–1887.
[20] S.M. Kim, W. Kim, J. Chung, and B.J. Yi, Kinematic analysesof a 1T2R and a 1T3R parallel mechanisms with closed-formposition solutions, Control and Automation, Christchurch,2009, 1874–1879.
[21] W.G. Runciman, A treatise on social theory, Vol. 2. (Cambridge:Cambridge University Press, 1989).
[22] C. Chen and J. Angeles, Generalized transmission index andtransmission quality for spatial linkages, Mechanism and Ma-chine Theory, 42(9), 2007, 1225–1237.
[23] C. Wu, X. Liu, J. Wang, Force transmission analysis ofspherical 5R parallel manipulators. Reconfigurable mechanismsand robots, ASME/IFToMM Int. Conf., London, UK, 2009,331–336.
[24] D. Sasaki, T. Noritsugu, and M. Takaiwa, Development of activesupport splint driven by pneumatic soft actuator (ASSIST),Robotics and Automation, Barcelona, 2005, 520–525.
[25] C. Li, Z. Rus´ak, Y. Hou, C. Young, and L. Ji, Upper limb motorrehabilitation integrated with video games focusing on trainingfingers’ fine movements, International Journal of Robotics andAutomation, 29(4), 2014, 359–368.
[26] A. Lo, P. Guarino, L. Richards, J. Haselkorn, et al., Robot-assisted therapy for long-term upper-limb impairment afterstroke, New England Journal of Medicine, 362(19), 2010,1772–1783.
Important Links:
Abstract
DOI:
10.2316/Journal.206.2018.2.206-5064
From Journal
(206) International Journal of Robotics and Automation - 2018
Go Back