Bin He and Qiang Lu
[1] J. Nassour, P. Henaff, F. Benouezdou, et al., Multi-layeredmulti-pattern CPG for adaptive locomotion of humanoidrobots, Biological Cybernetics, 108, 2014, 291–303. [2] J. Yu, M. Tan, J. Chen, et al., A survey on CPG-inspired controlmodels and system implementation, IEEE Transactions onNeural Networks and Learning Systems, 25(3), 2014, 441–456. [3] B. He, Q. Lu, and Z. Wang, Coupling effect analysis be-tween the central nervous system and the CPG network withproprioception, Robotica, 33(6), 2015, 1281–1294. [4] I.A. Rybak, N.A. Shevtsova, M. Lafreniere-Roula, et al., Modelling spinal circuitry involved in locomotor pattern generation:Iinsights from deletions during fictive locomotion, Journal ofPhysiology, 577(2), 2006, 617–639. [5] K. Matsuoka, Sustained oscillations generated by mutuallyinhibiting neurons with adaptation, Biological Cybernetics, 52,1985, 367–376. [6] O. Tutsoy, CPG based RL algorithm learns to control of ahumanoid robot leg, International Journal of Robotics andAutomation, 30(2), 2015, 178–183. [7] L. Lundfald, C.E. Restrepo, S.J. Butt, et al., Phenotype ofV2-derived interneurons and their relationship to the axonguidance molecule EphA4 in the developing mouse spinal cord,European Journal of Neuroscience, 26, 2007, 2989–3002. [8] K.J. Dougherty and O. Kiehn, Firing and cellular propertiesof V2a interneurons in the rodent spinal cord, Journal ofNeuroscience, 30, 2010, 24–37. [9] S. A. Crone, K. A. Quinlan, L. Zagoraiou, et al., Geneticablation of V2a ipsilateral interneurons disrupts left-right locomotor coordination in mammalian spinal cord, Neuron, 60,2008, 70–83. [10] J. Wojcik, J. Schwabedal, R. Clewley, et al., Key bifurcationsof bursting polyrhythms in 3-cell central pattern generators,Plos One, 9(4), 2014, e92918. [11] T. Iwasaki, J. Chen, and W.O. Friesen, Biological clockworkunderlying adaptive rhythmic movements, Proceeding of theNational Academy of Sciences of the United States of America,111(3), 2014, 978–983. [12] N. Dominici, Y. P. Ivanenko, G. Cappellini, et al., Locomotorprimitives in newborn babies and their development, Science,334, 2011, 997–999. [13] Y.P. Ivanenko, N. Dominici, and G. Cappellini, Changes in thespinal segmental motor output for stepping during developmentfrom infant to adult, Journal of Neuroscience, 33(7), 2013,3025–3036. [14] J.S. Dasen, B.C. Tice, S. Brenner-Morton, et al., A Hoxregulatory network establishes motor neuron pool identity andtarget-muscle connectivity, Cell, 123, 2005, 477–491. [15] F. Lacquaniti, Y.P. Ivanenko, and M. Zago, Patterned controlof human locomotion, Journal of Physiology, 590(10), 2012,2189–2199. [16] K. Matsuoka, Analysis of a neural oscillator, Biological Cybernetics, 104, 2011, 297–304. [17] P.F. Rowat and A.I. Selverston, Oscillatory mechanisms in pairsof neurons connected with fast inhibitory synapses, Journal ofComputational Neuroscience, 4(2), 1997, 103–127. [18] B. He, Z. Wang, R. Shen, et al., Real-time walking patterngeneration for a biped robot with hybrid CPG-ZMP algorithm,International Journal of Advanced Robotic Systems, 11, 2014,160. [19] G. Taga, A model of the neuro-musculo-skeletal system forhuman locomotion I. Emergence of basic gait, Biological Cybernetics, 73, 1995, 97–111. [20] R. Pfeifer, M. Lungarella, and F. Iida, Self-organization,embodiment, and biologically inspired robotics, Science, 318,2007, 1088–1093.
Important Links:
Go Back