STEERING CONTROL FOR A RIGID BODY HAVING TWO TORQUE ACTUATORS USING ADAPTIVE BACKSTEPPING

Fazal-ur-Rehman, Ibrahim Shah, and Adeel A. Saleem

References

  1. [1] A. Astolfi, Output feedback stabilization of the angular velocityof a rigid body, Systems & Control Letters, 36, 1999, 181–192.
  2. [2] C.-J. Wan and D.S. Bernstein, Rotational stabilization ofa rigid body using two torque actuators, Proc. 32nd Conf.Decision and Control, San Antonio Texas, 1993, 3111–3116.
  3. [3] F. Bullo, N.E. Leonard, and A.D. Lewis, Controllability andmotion algorithms for under actuated Lagrangian systems onLie groups, IEEE Transactions on Automatic Control, 45(8),2000, 1437–1454.
  4. [4] M. Reyhanoglu, Discontinuous feedback stabilization of theangular velocity of a rigid body with two control torques, Proc.35th Conf. Decision Control, Kobe, Japan, 1996, 700–1705.
  5. [5] R. Outbib and G. Sallet, Stabilizability of the angular velocityof a rigid body revisited, Systems & Control Letters, 18, 1992,93–98.
  6. [6] E.D. Sontag and H.J. Sussmann, Further comments on sta-bilizability of the angular velocity of a rigid body revisited,Systems & Control Letters, 12, 1988, 213–217.
  7. [7] R.W. Brockett, Asymptotic stability and feedback stabilization,in R.W. Brockett, R.S. Millman, and H.J. Sussman (eds.),Differential Geometric Control Theory, Birkhauser, Boston,MA, 1983, 181–191.
  8. [8] Aeyels, Stabilization of a class of nonlinear systems by a smoothfeedback control, Systems & Control Letters, 5, 1985, 289–294.
  9. [9] C.I. Byrnes and Isidori, New results and examples in nonlinearfeedback stabilization, Systems & Control Letters, 12, 1989,437–442.
  10. [10] I. Kolmanovsky and N.H. McClamroch, Developments in non-holonomic control problems, IEEE Control Systems Magazine,15, 1995, 20–36.
  11. [11] J.-B. Pomet, Explicit design of time-varying control laws for aclass of controllable systems without drift, Systems & ControlLetters, 18, 1992, 147–158.
  12. [12] C. Samson, Control of chained systems: Application to pathfollowing and time-varying point-stabilization of mobile robots,IEEE Transactions on Automatic Control, 40(1), 1995, 64–77.
  13. [13] A. Astolfi, Discontinuous control of the Brockett integrator,European Journal of Control, 4(1), 1998, 49–63.
  14. [14] P. Lucibello and G. Oriolo, Robust stabilization via itera-tive state steering with application to chained form systems,Automatica, 37(1), 2001, 71–79.
  15. [15] M.S. Branicky, Multiple Lyapunov functions and other analysistools for switched and hybrid systems, IEEE Transactions onAutomatic Control, 43(4), 1998, 475–482.
  16. [16] M. Krstic, I. Kanellakopoulos, and P. Kokotovic, Nonlinearand adaptive control design (Wiley, New York, 1995).
  17. [17] H.B. Gao, X.G. Song, L. Ding, and Z.Q. Deng, Adaptivetracking control of nonholonomic systems based on feedbackerror learning, IJRA, 28(4), 2013, 371–378.
  18. [18] H.A. Jabbari, G. Oriolo, and H. Bolandi, An adaptive schemefor image-based visual servoing of an underactuated UAV,IJRA, 29(1), 2014, 92–104.
  19. [19] E. Mohammadpour and N. Mahyar, Robust adaptive trackingand regulation of wheeled mobile robots violating kinematicconstraint, IJRA, 25(4), 2010, 323–334.
  20. [20] A. Deliba¸si, E. Zergeroglu, I.B. K¨u¸c¨ukdemiral, and G. Can-sever, Adaptive self-tuning control of robot manipulators withperiodic disturbance estimation, IJRA, 24(1), 2010, 48–56.
  21. [21] H.J. Sussmann, A general theorem on local controllability,SIAM Journal on Control and Optimization, 25, 1987, 158–194.
  22. [22] W. Liu, An approximation algorithm for non-holonomic sys-tems, SIAM Journal of Control Optimization, 35(4), 1997,1328–1365.
  23. [23] F.U. Rehman, Set point feedback stabilization of drift freesystems, Ph.D. Thesis, McGill University Canada, 1997.
  24. [24] F.U. Rehman, Regulating control of the angular velocity ofa rigid body with two torque actuators, IJECE, 3(1), 2004,72–78.

Important Links:

Go Back