INTEGRAL SLIDING MODE CONTROL BASED ON EXTREME LEARNING MACHINE FOR A WIND TURBINE

Miloud Koumir, Ayoub E. Bakri, and Ismail Boumhidi

References

  1. [1] F.D. Bianch, H. De Battista, and R.J. Mantz, Wind turbine control systems, principles, modeling and gain scheduling design (London, UK: Springer-Verlag, 2007).
  2. [2] S. Vijayalakshmi, V. Ganapathy, K. Vijayakumar, and S.S. Dash. Maximum power point tracking for wind power generation system at variable wind speed using a hybrid technique, International Journal of Control and Automation, 8(7), 2015, 357–372.
  3. [3] E. Boufounas, J. Boumhidi, N. Farhane, and I. Boumhidi,Neural network sliding mode controller for a variable speedwind turbine, Control and Intelligent Systems, 41(4), 2013,251–258.
  4. [4] J. Merida, L.T. Aguilar, and J. Davila, Analysis and synthesis of sliding mode control for large scale variable speed wind turbine for power optimization, Renewable Energy, 71, 2014, 715–728.
  5. [5] T. Khalfallah, B. Cheikh, A. Tayeb, and G. Champenois,Power control of wind turbine based on fuzzy sliding-modecontrol, International Journal of Power Electronics and Drive System, 5(4), 2015, 502–511.
  6. [6] S. Rajendran and D. Jena, Validation of an integral sliding mode control for optimal control of a three blade variable speed variable pitch wind turbine, Electrical Power and Energy Systems, 69, 2015, 421–429.
  7. [7] V.I. Utkin, Sliding modes in control optimization (Berlin: Springer-Verlag, 1992).
  8. [8] V. Utkin and J. Shi, Integral sliding mode in systems operating under uncertainty conditions, Proc. 35th IEEE Conf. Decision Control, Kobe, Japan, 1996, 4591–4596.
  9. [9] F. Casta˜nos and L. Fridman, Analysis and design of integral sliding manifolds for systems with unmatched perturbations, IEEE Transactions on Automatic Control, 51(5), 2006, 853–858.
  10. [10] G. Huang, Q. Zhu, and C. Siew, Extreme learning machine: Theory and applications, Neurocomputing, 70(1–3), 2006, 489–501.
  11. [11] B. Xue, X. Ma, H. Wang, J. Gu, and Y. Li, Improved variable-length particle swarm optimization for structure-adjustable extreme learning machine, Control and Intelligent Systems, 42(4), 2014, 1–9.
  12. [12] V. Nikoli´c, S. Motamedi, S. Shamshirband, D. Petkovi´c, and S. Ch, Extreme learning machine approach for sensorless wind speed estimation, Mechatronics, 34(2), 2016, 78–83.
  13. [13] C. Wan, Z. Xu, P. Pinson, Z.Y. Dong, and K.P. Wong, Probabilistic forecasting of wind power generation using extreme learning machine, IEEE Transactions on Power Systems, 29(3), 2014, 1033–1044.
  14. [14] S. Salcedo-Sanz, A. Pastor-S´anchez, L. Prieto, A. Blanco-Aguilera, and R. Garc´ıa-Herrera, Feature selection in wind speed prediction systems based on a hybrid coral reefs optimization – extreme learning machine approach, Energy Conversion and Management, 87, 2014, 10–18.
  15. [15] S. Wu, Y. Wang, and S. Cheng, Extreme learning machinebased wind speed estimation and sensorless control for windturbine power generation system, Neurocomputing, 102, 2013,163–175.
  16. [16] B. Boukhzzar and H. Siguerdidjane, Nonlinear control of a variable-speed wind turbine using a two-mass model, IEEE Transactions on Energy Conversion, 26(1), 2011, 149–162.
  17. [17] A. Kusiak and W. Li, Estimation of wind speed: A data-driven approach, Journal of Wind Engineering and IndustrialAerodynamics, 98(10–11), 2010, 559–567.
  18. [18] A.G. Abo-Khalil and D.-C. Lee, MPPT control of wind generation systems based on estimated wind speed using SVR, IEEE Transactions on Industrial Electronics, 55(3), 2008, 1489–1490.

Important Links:

Go Back