Nesrine Baklouti and Adel M. Alimi
[1] H. Hagras, Type-2 flcs: a new generation of fuzzy controllers,IEEE Computational Intelligence Magazine, 2(1), 2007, 30–43,2007. [2] R.I. John, P.R. Innocent, and M.R. Barnes, Neuro-fuzzyclustering of radiographic tibia image data using type 2 fuzzysets, Information Sciences, 125(1–4), 2000, 65–82. [3] R. John and S. Lake, Type-2 fuzzy sets for modelling nursingintuition, in IFSA World Congress and 20th NAFIPS Inter-national Conf., 2001. Joint 9th, vol. 4, Vancouver, BC, Jul2001, 1920–1925. [4] N.N. Karnik and J.M. Mendel, Applications of type-2 fuzzylogic systems to forecasting of time-series, Information Sci-ences, 120(1–4), 1999, 89–111. [5] Q. Liang and J. Mendel, Equalization of nonlinear time-varyingchannels using type-2 fuzzy adaptive filters, IEEE Transactionson Fuzzy Systems, 8(5), 2000, 551–563. [6] C. Lynch, H. Hagras, and V. Callaghan, Embedded type-2flc for real-time speed control of marine and traction dieselengines, in 2005. FUZZ ’05. The 14th IEEE InternationalConf. on Fuzzy Systems, Reno, NV, May 2005, 347–352. [7] D. Wu and W. Tan, A type-2 fuzzy logic controller for theliquid-level process, in Proceedings 2004 IEEE InternationalConf on Fuzzy Systems, vol. 2, Budapest, Hungary, Jul 2004,953–958. [8] S. Cherif, N. Baklouti, and A.M. Alimi, Cww: the encodingpart, in Soft Computing and Pattern Recognition (SoCPaR),2014 6th International Conf. of. Tunis, Tunisia, IEEE, Aug11–14, 2014, 471–476. [9] S. Cherif, N. Baklouti, A.M. Alimi, and V. Snasel, HybridIntelligent Systems: 15th International Conference HIS 2015on Hybrid Intelligent Systems, Seoul, South Korea, November16–18, 2015. Cham: Springer International Publishing, 2016,ch. A Type-2 Fuzzy Concepts Lexicalized Representation byPerceptual Reasoning and Linguistic Weighted Average: AComparative Study, 77–86. [10] N. Baklouti, A. M. Alimi, and A. Abraham, Interval type-2beta fuzzy basis functions: Some properties and their first-order derivatives, in Systems, Man, and Cybernetics (SMC),2015 IEEE International Conf. on. Hong Kong, China: IEEE,Oct 9–12, 2015, pp. 2227–2232. [11] K. C. Wu, Fuzzy interval control of mobile robots, Computersand Electrical Engineering, 22(3), 1996, 211–229. [12] H. Hagras, A hierarchical type-2 fuzzy logic control architecturefor autonomous mobile robots, IEEE Transactions on FuzzySystems, 12(4), 2004, 524–539. [13] P. Phokharatkul and S. Phaiboon, Mobile robot control usingtype-2 fuzzy logic system, in 2004 IEEE Conf. on Robotics,Automation and Mechatronics, vol. 1, Singapore, Dec 2004,296–299. [14] J. Figueroa, J. Posada, J. Soriano, M. Melgarejo, and S. Rojas,A type-2 fuzzy controller for tracking mobile objects in thecontext of robotic soccer games, in FUZZ ’05. The 14th IEEEInternational Conf. on Fuzzy Systems, Reno, NV, May 2005,359–364. [15] N. Baklouti and A.M. Alimi, Motion planning in dynamic andunknown environment using an interval type-2 tsk fuzzy logiccontroller, in FUZZ-IEEE 2007. IEEE International Conf. onFuzzy Systems, London, UK, 2007, 1–6. [16] N. Baklouti and A.M. Alimi, The geometric interval type-2fuzzy logic approach in robotic mobile issue, in FUZZ-IEEE2009. IEEE International Conf. on Fuzzy Systems, Jeju Island,Korea, Aug 2009, 1971–1976. [17] N. Baklouti, R. John, and A.M. Alimi, Interval type-2 fuzzylogic control of mobile robots, Journal of Intelligent LearningSystems and Applications, 4(4), 2012, 291–302. [18] J.R. Castro, O. Castillo, P. Melin, and A. Rodriguez-Diaz,A hybrid learning algorithm for a class of interval type-2fuzzy neural networks, Information Sciences, 179(13), 2009,2175–2193. [19] J. Mendel, Computing derivatives in interval type-2 fuzzy logicsystems, Fuzzy Systems, IEEE Transactions on, 12(1), 2004,84–98. [20] P. Seihwan and H. Lee-Kwang, A designing method for type-2fuzzy logic systems using genetic algorithms, in IFSA WorldCongress and 20th NAFIPS International Conf., 2001. Joint9th, Vancouver, BC, Jul 2001, 2567–2572. [21] H.P.H. Anh, Novel fuzzy NARX IMC control of MISO dynamicsystem using particle swarm optimization, International Jour-nal of Robotics and Automation, vol. 29, no. 2, pp. 133–143,2014. [22] A. Rafik, P. Witold, B. Guirimov, R. Aliev, U. Ilhan,M. Babagil, and S. Mammadli, Type-2 fuzzy neural networkswith fuzzy clustering and differential evolution optimization,Information Sciences, 181(9), 2011, 1591–1608. [23] G.M. Mendez and M. Hernandez, Hybrid learning for intervaltype-2 fuzzy logic systems based on orthogonal least-squaresand back-propagation methods, Information Sciences, 179(13),2009, 2146–2157. [24] G.M. Mendez and M. Hernendez, Hybrid learning mechanismfor interval a2-c1 type-2 non-singleton type-2 takagi sugenoand kang fuzzy logic systems, Information Sciences, 220(1),2013, 149–169. [25] T. Kumbasar and H. Hagras, Big bang-big crunch optimiza-tion based interval type-2 fuzzy pid cascade controller designstrategy, Information Sciences, 282, Oct 2014, 277–295. [26] E. Yesil, Interval type-2 fuzzy pid load frequency controller us-ing big bang-big crunch optimization, Applied Soft Computing,15, Feb 2014, 100–112. [27] O. Castillo and P. Melin, A review on the design and op-timization of interval type-2 fuzzy controllers, Applied SoftComputing, 12(4), 2012, 1267–1278. [28] O. Castillo, R. Martinez-Marroquin, P. Melin, F. Valdez, andJ. Soria, Comparative study of bio-inspired algorithms appliedto the optimization of type-1 and type-2 fuzzy controllers foran autonomous mobile robot, Information Sciences, 192(1),2012, 19–38. [29] R. Martinez-Soto, O. Castillo, L. T. Aguilar, and P. Melin,Fuzzy logic controllers optimization using genetic algorithmsand particle swarm optimization, in Proc. of the 9th Mexicaninternational conference on artificial intelligence conferenceon advances in soft computing: Part II, ser. MICAI’10. Berlin,Heidelberg: Springer-Verlag, 2010, 475–486. [30] C. Wong, H. Wang, and S. Li, PSO-based motion fuzzycontroller design for mobile robots, International Journal ofFuzzy Systems, 10(1), 2008, 284–292.125 [31] Z. Bingul and O. Karahan, A fuzzy logic controller tuned withpso for 2 dof robot trajectory control, Expert Systems withApplications, 38(1), 2011, 1017–1031. [32] A. Chatterjee, K. Pulasinghe, K. Watanabe, and K. Izumi,A particle-swarm-optimized fuzzy-neural network for voice-controlled robot systems, Industrial Electronics, IEEE Trans-actions on, 52(6), 2006, 1478–1489. [33] S. Bouallgue, J. Haggge, M. Ayadi, and M. Benrejeb, Pid-typefuzzy logic controller tuning based on particle swarm optimiza-tion, Engineering Applications of Artificial Intelligence, 25(3),2012, 484–493. [34] T. Kumbasar and H. Hagras, A type-2 fuzzy cascade controlarchitecture for mobile robots, in Systems, Man, and Cyber-netics (SMC), 2013 IEEE International Conf. on, Manchester,UK, Oct 2013, 3226–3231. [35] J. Mendel and R. John, Type-2 fuzzy sets made simple, IEEETransactions on Fuzzy Systems, 10(2), 2002, 117–127. [36] N.N. Karnik and J. Mendel, Centroid of a type-2 fuzzy set,Information Sciences, 132(1–4), 2001, 195–220. [37] N. Karnik, J. Mendel, and Q. Liang, Type-2 fuzzy logic systems,IEEE Transactions on Fuzzy Systems, 7(6), 1999, 643–658. [38] R. Eberhart and J. Kennedy, A new optimizer using particleswarm theory, in Micro Machine and Human Science, 1995.MHS ’95., Proc. of the Sixth International Symposium on,Nagoya, Japan, Oct 1995, 39–43. [39] N. Baklouti, H. Lamti, K. Salhi, and A. Alimi, Pso based adap-tive learning fuzzy logic controller for the irobot create robot,in Hybrid Intelligent Systems (HIS), 2013 13th InternationalConf. on, Gammarth, Tunisia, Dec 2013, 99–104. [40] W. Elloumi, N. Baklouti, A. Abraham, and A.M. Alimi, Themulti-objective hybridization of particle swarm optimizationand fuzzy ant colony optimization, Journal of Intelligent andFuzzy Systems, 27(1), 2013, 515–525. [41] W. Elloumi, N. Baklouti, A. Abraham, and A.M. Alimi,Hybridization of fuzzy pso and fuzzy aco applied to tsp, inHybrid Intelligent Systems (HIS), 2013 13th InternationalConf. on, Gammarth, Tunisia, Dec 2013, 105–110. [42] Y. Qin, D. Sun, N. Li, and Y. Cen, Path planning for mobilerobot using the particle swarm optimization with mutationoperator, in International Conf. on Machine Learning andCybernetics, vol. 4, Shanghai, China, Aug 2004, 2473–2478. [43] X. Chen and Y. Li, Smooth path planning of a mobile robotusing stochastic particle swarm optimization, in Mechatronicsand Automation, Proc. of the 2006 IEEE International Conf.on, Luoyang, Henan, China, Jun 2006, 1722–1727. [44] L. Wang, Y. Liu, H. Deng, and Y. Xu, Obstacle-avoidancepath planning for soccer robots using particle swarm opti-mization, in Robotics and Biomimetics, 2006. ROBIO ’06.IEEE International Conf. on, Kunming, China, Dec 2006,1233–1238. [45] W. Liu, I.-Y. Chung, L. Liu, S. Leng, and D. A. Cartes,Real-time particle swarm optimization based current harmoniccancellation, Engineering Applications of Artificial Intelligence,24(1), 2011, 132–141. [46] S. Hajforoosh, M. A. Masoum, and S. M. Islam, Real-timecharging coordination of plug-in electric vehicles based onhybrid fuzzy discrete particle swarm optimization, ElectricPower Systems Research, 128(1), 2015, 19–29. [47] h. iRobot. [Online]. Available: http://store.irobot.com/ [48] N. Baklouti and A.M. Alimi, Real time pso based adaptivelearning type-2 fuzzy logic controller design for the irobotcreate robot, in Individual and Collective Behaviors in Robotics(ICBR), 2013 International Conf. on. Sousse, Tunisia: IEEE,2013, 15–20. [49] S. Bousnina, B. Ammar, N. Baklouti, and A. Alimi, Learningsystem for mobile robot detection and tracking, in Communica-tions and Information Technology (ICCIT), 2012 InternationalConf. on, Hammamet, Tunisia, Jun 2012, 384–389. [50] T. Dutta, Evaluation of the kinecttm sensor for 3-d kinematicmeasurement in the workplace, Applied Ergonomics, 43(4),2012, 645–649, 2012. [51] h.-w. GP2. [Online]. Available: http://sharp-world.com/products/device/lineup/data/pdf/datasheet/gp2y0d340k-e.pdf [52] J. Borenstein and L. Feng, Measurement and correction ofsystematic odometry errors in mobile robots, Robotics andAutomation, IEEE Transactions on, 12(6), 1996, 869–880.
Important Links:
Go Back