AN ADAPTIVE FEEDFORWARD CONTROL METHOD FOR UNDER-ACTUATED BIPEDAL WALKING ON THE COMPLIANT GROUND

Yang Wang, Jiatao Ding, and Xiaohui Xiao

References

  1. [1] T. McGeer, Passive dynamic walking, International Journalof Robotics Research, 9(2), 1990, 62–82.
  2. [2] J.W. Grizzle, C. Chevallereau, R.W. Sinnet, and A.D. Ames,Models, feedback control, and open problems of 3D bipedalrobotic walking, Automatica, 50(8), 2014, 1955–1988.
  3. [3] S. Collins, A. Ruina, R. Tedrake, and M. Wisse, Efficientbipedal robots based on passive-dynamic walkers, Science,307(5712), 2005, 1082–1085.
  4. [4] C. Chevallereau, A. Gabriel, Y. Aoustin, F. Plestan, E. West-ervelt, C.C. De Wit, and J. Grizzle, Rabbit: A testbed foradvanced control theory, IEEE Control Systems Magazine,23(5), 2003, 57–79.
  5. [5] A. Ramezani and J.W. Grizzle, ATRIAS 2.0, a new 3-D bipedalroboticwalker and runner, Proc. International Conference onClimbing and Walking Robots and the Support Technologiesfor Mobile Machines, 2012, 467–474.
  6. [6] H. Dai, A. Valenzuela, and R. Tedrake, Whole-body motionplanning with centroidal dynamics and full kinematics, Proc.IEEE-RAS International Conference on Humanoid Robots,2014, 295–302.
  7. [7] J. Grizzle, J. Hurst, B. Morris, H.-W. Park, and K. Sreenath,MABEL, a new robotic bipedal walker and runner, Proc.American Control Conference, 2009, 2030–2036.
  8. [8] S.N. Yadukumar, M. Pasupuleti, and A.D. Ames, Human-inspired underactuated bipedal robotic walking with AMBERon flat-ground, up-slope and uneven terrain, Proc. IEEE/RSJInternational Conf. Intelligent Robots and Systems, 2012,2478–2483.
  9. [9] B. Tondu and N. Bardou, A new interpretation of mori’s un-canny valley for future humanoid robots, International Journalof Robotics & Automation, 26(3), 2011, 1.
  10. [10] W. Stronge, R. James, and B. Ravani, Oblique impact withfriction and tangential compliance, Philosophical Transactionsof the Royal Society of London A: Mathematical, Physical andEngineering Sciences, 359(1789), 2001, 2447–2465.
  11. [11] Y.-T. Wang, V. Kumar, and J. Abel, Dynamics of rigid bodiesundergoing multiple frictional contacts, Proc. IEEE Int. Conf.Robotics and Automation, 1992, 2764–2769.
  12. [12] F. Plestan, J.W. Grizzle, E.R. Westervelt, and G. Abba, Stablewalking of a 7-dof biped robot, IEEE Transactions on Robotics& Automation, 19(4), 2003, 653–668.
  13. [13] E.R. Westervelt, J.W. Grizzle, C. Chevallereau, J.H. Choi,and B. Morris, Feedback control of dynamic bipedal robotlocomotion (Boca Raton: CRC Press, 2007).
  14. [14] K. Sreenath, H.W. Park, I. Poulakakis, and J.W. Grizzle, Acompliant hybrid zero dynamics controller for stable, efficientand fast bipedal walking on MABEL, International Journal ofRobotics Research, 30(9), 2011, 1170–1193.
  15. [15] K. Byl and R. Tedrake, Approximate optimal control of thecompass gait on rough terrain, Proc. IEEE International Conf.Robotics and Automation, 2008, 1258–1263.
  16. [16] K. Byl and R. Tedrake, Metastable walking machines, Inter-national Journal of Robotics Research, 28(8), 2009, 1040–1064.
  17. [17] I.R. Manchester, U. Mettin, F. Iida, and R. Tedrake, Stabledynamic walking over uneven terrain, International Journal ofRobotics Research, 70(2011), 2011, 265–279.
  18. [18] I.R. Manchester, M.M. Tobenkin, M. Levashov and R. Tedrake,Regions of attraction for hybrid limit cycles of walking robots,In Proc. IFAC World Congress, 2011, 5801–5806.
  19. [19] Dai, Hongkai, and R. Tedrake, Optimizing robust limit cyclesfor legged locomotion on unknown terrain, Proc. 51st Annu.IEEE Conf. Decision and Control, 2012, 1207–1213.
  20. [20] H. Dai and R. Tedrake, L2-gain optimization for robust bipedalwalking on unknown terrain, Proc. IEEE International Conf.Robotics and Automation, 2013, 3116–3123.
  21. [21] Y. Hurmuzlu and D.B. Marghitu, Rigid body collisions of planarkinematic chain with multiple contact points, InternationalJournal of Robotics Research, 13(1), 1994, 82–92.
  22. [22] T. Yang, E.R. Westervelt, A. Serrani, and J.P. Schmiedeler,A framework for the control of stable aperiodic walking inunderactuated planar bipeds, Autonomous Robots, 27(3), 2009,277–290.
  23. [23] J. Schr¨oder-Schetelig, P. Manoonpong, and F. W¨org¨otter,Using efference copy and a forward internal model for adaptivebiped walking, Autonomous Robots, 29(3–4), 2010, 357–366.
  24. [24] T. Geng, Online regulation of the walking speed of a planar limitcycle walker via model predictive control, IEEE Transactionson Industrial Electronics, 61(5), 2014, 2326–2333.
  25. [25] D.G.E. Hobbelen and M. Wisse, Controlling the walkingspeed in limit cycle walking, International Journal of RoboticsResearch, 27(9), 2008, 989–1005.76
  26. [26] D.W. Marhefka and D.E. Orin, Simulation of contact usinga nonlinear damping model, Proc. IEEE International Conf.Robotics and Automation, 1996, 1662–1668.
  27. [27] P.S. Freeman and D.E. Orin, Efficient dynamic simulationof a quadruped using a decoupled tree-structure approach,International Journal of Robotics Research, 10(6), 1991,619–627.
  28. [28] D.E. Stewart and J.C. Trinkle, An implicit time-steppingscheme for rigid body dynamics with inelastic collisions andcoulomb friction, International Journal for Numerical Methodsin Engineering, 39(15), 1996, 2673–2691.
  29. [29] W.J. Stronge, Rigid body collisions with friction, Proc. theRoyal Society of London A: Mathematical, Physical and Engi-neering Science, 431(1881), 2000, 169–181.
  30. [30] C. Chevallereau, J.W. Grizzle, and C.-L. Shih, Asymptoticallystable walking of a five-link underactuated 3-D bipedal robot,IEEE Transactions on robotics, 25(1), 2009, 37–50.
  31. [31] J.W. Grizzle, G. Abba, and F. Plestan, Asymptotically stablewalking for biped robots: Analysis via systems with impulseeffects, IEEE Transactions on Automatic Control, 446(1),2001, 51–64.
  32. [32] Y. Wang, J. Ding, and X. Xiao, Periodic stability for 2-Dbiped dynamic walking on compliant ground, InternationalConf. Intelligent Robotics and Applications, 2015, 369–380.

Important Links:

Go Back