Xinghua Liu and Hongsheng Xi


  1. [1] Y. Kuang, Delay differential equations with applications inpopulation dynamics (San Diego: Academic Press, 1993).
  2. [2] V.B. Kolmanovskii and A. Myshkis, Applied theory of func-tional differential equations (Dordrecht, Netherlands: KluwerAcademic Publishers, 1999).
  3. [3] C.Y. Lu, J.S.H. Tsai, and T.J. Su, Delay-dependent robustH∞ filtering for interval systems with state delays, Controland Intelligent Systems, 34(2), 2006, 113–118.
  4. [4] J.E. Feng and S.Y. Xu, Output feedback stabilization of aclass of stochastic nonlinear systems with delays in the input,Asian Journal of Control, 12(1), 2010, 110–115.
  5. [5] L. Dugard and E.I. Verriest, Stability and control of time-delaysystems (Springer: London, 1998).
  6. [6] M.C. Pai, Robust tracking and model following of time-delaysystems, Control and Intelligent Systems, 37(3), 2009, 135–141.
  7. [7] S.I. Niculescu, Lecture notes in control and information sci-ences, delay effects on stability: a robust control approach(London: Springer-Verlag, 2001).
  8. [8] C.H. Lien, New stability criterion for a class of uncertainnonlinear neutral time-delay systems, International Journal ofSystems Science, 32(2), 2001, 215–219.
  9. [9] C.H. Lien, K.W. Yu, and J.G. Hsieh, Stability conditions fora class of neutral systems with multiple delays, Journal ofMathematical Analysis and Applications, 245(1), 2000, 20–27.
  10. [10] E. Fridman. New Lyapunov-Krasovaskii functionals for stabilityof linear retarded and neutral type systems, System and ControlLetters, 43(4), 2001, 309–319.
  11. [11] J.D. Chen, C.H. Lien, K.K. Fan, and J.H. Chou, Criteriafor asymptotic stability of a class of neutral systems via aLMI approach, IEE Proceeding of Control Theory Application,148(6), 2001, 442–447.
  12. [12] Q.L. Han, Robust stability of uncertain delay-differential sys-tems of neutral type, Automatica, 38(4), 2002, 719–723.
  13. [13] D. Ivanescu, S.I. Niculescu, L. Dugard, J.M. Kion, and E.I. Ver-riest, On delay-dependent stability for linear neutral systems,Automatica, 39(2), 2003, 255–261.
  14. [14] Q.L. Han, On delay-dependent stability for neutral delay-differential systems, International Journal of Applied Mathe-matics and Computer Science, 11(4), 2001, 965–976.
  15. [15] S.I. Niculescu, On delay-dependent stability under model trans-formations of some neutral linear systems, International Jour-nal of Control, 74(6), 2001, 609–617.
  16. [16] D.W. Qian, J.Q. Yi, X.J. Liu, G.T. Yang, and M.X. Wang,Robust control by sliding mode for a class of uncertain un-deractuated systems with saturation, Control and IntelligentSystems, 38(2), 2010, 87–94.
  17. [17] S. Gao, H. Dong, Y. Chen, B. Ning, and G. Chen, Adaptive androbust automatic train control systems with input saturation,Control and Intelligent Systems, 41(2), 2013, 103–111.
  18. [18] T.S. Hu and Z.L. Lin, Control systems with actuator saturation:analysis and design (Boston, MA: Birkhauser, 2001).
  19. [19] J.M. G da Silva and S. Tarbouriech, Local stabilization ofdiscrete-time linear systems with saturating controls: an LMI-based approach, IEEE Transactions on Automatic Control,46(1), 2001, 119–125.208
  20. [20] C. Pittet, S. Tarbouriech, and C. Burgat, Stability regions forlinear systems with saturating controls via circle and Popovcriteria, Proc. 36th IEEE Conf. on Decision and Control, SanDiego, California, CA, 1997, 4518–4523.
  21. [21] G. Scorletti, J.P. Folcher, and L. El Ghaoui, Output feed-back control with input saturations: LMI design approaches,European Journal of Control, 7(6), 2001, 567–579.
  22. [22] H. Hindi and S. Boyd, Analysis of linear systems with saturatingusing convex optimization, Proc. 37th IEEE Conf. on Decisionand Control, Tampa, Florida, CA, 1998, 903–908.
  23. [23] J.M. G da Silva, A. Seuret, E. Fridman, and J.P. Richard,Stabilisation of neutral systems with saturating control inputs,International Journal of Systems Science, 42(7), 2011, 1093–1103.
  24. [24] S. Srivastava and F. Jabbari, Scheduled controllers for distur-bance attenuation of systems with bounded inputs, Proceedingsof American Control Conference, Chicago, CA, 2000, 735–739.
  25. [25] A. Haurania, H. Michalskab, and B. Bouletc, Delay-dependentrobust stabilization of uncertain neutral systems with saturat-ing actuators, Proceedings of the American Control Conference,Denver, Colorado, CA, 2003, 509–514.
  26. [26] F.E. Haoussi and E.H. Tissir, Delay and its time-derivativedependent robust stability of uncertain neutral systems withsaturating actuators, International Journal of Automation andComputing, 7(4), 2010, 455–462.
  27. [27] F.E. Haoussi and E.H. Tissir, Stabilization of neutral systemswith saturating actuators, Journal of Control Science andEngineering, 823290, 8, 2012, doi:10.1155/2012/823290.
  28. [28] J.J. Yan, J.S. Lin, and T.L. Liao, Robust dynamic compensatorfor a class of time delay systems containing saturating controlinput, Chaos, Solitons and Fractals, 31(5), 2007, 1223–1231.
  29. [29] P.L. Liu, Stabilization of input delay constrained systems withdelay-dependence, International Journal of Systems Science,26(2), 1995, 245–255.
  30. [30] P.L. Liu, Stabilization criteria for neutral time delay sys-tems with saturating actuators, Journal of Franklin Institute,347(10), 2010, 1577–1588.
  31. [31] J.H. Kim and Z. Bien, Robust stability of uncertain linearsystems with saturating actuators, IEEE Transactions onAutomatic Control, 49(1), 1994, 202–207.
  32. [32] J. K. Hale and S. M. Verduyn Lunel, Introduction to func-tional differential equations(applied mathematical sciences)(NewYork: Springer-Verlag, 1993).
  33. [33] H.B. Ji, Algebra foundation of control theory (Hefei: Universityof Science and Technology of China Press, 2008).
  34. [34] W.A. Zhang and L. Yu, Delay-dependent robust stability ofneutral systems with mixed delays and nonlinear perturbations,Acta Automatica Sinica, 33(8), 2007, 863–866.
  35. [35] D.E. Kirk, Optimal control theory – an introducion, (EnglewoodCliffs, NJ: Prentice-Hall, 1970).

Important Links:

Go Back