INCREASING CONVERSION OF CO2 TO CO VIA RWGS REACTION: SIMULATION AND PROCESS DESIGN

Farhang Abdollahi, Handan Tezel, and Stephen Aplin

References

  1. [1] K. Schultz, S.L. Bogart, R.P. Noceti, and A.V. Cugini, Synthesis of hydrocarbon fuels using renewable and nuclear energy, Nuclear Technology, 166(1), 56–63.
  2. [2] G. Centi and S. Perathoner, Opportunities and prospects in the chemical recycling of carbon dioxide to fuels, Catalysis Today, 148(3–4), 191–205.
  3. [3] O.S. Joo, K.D. Jung, I. Moon, A.Y. Rozovskii, G.I. Lin, S.H. Han, and S.J. Uhm, Carbon dioxide hydrogenation to form methanol via a reverse-water-gas-shift reaction (the CAMERE process), Industrial and Engineering Chemistry Research, 38(5), 1808–1812.
  4. [4] O.S. Joo, K.D. Jung, and Y.S. Jung, CAMERE process for methanol synthesis from CO2 hydrogenation, Carbon Dioxide Utilization for Global Sustainability, 153, 67–72.
  5. [5] F. Bustamante, R.M. Enick, A.V. Cugini, R.P. Killmeyer, B.H. Howard, K.S. Rothenberger, M.V. Ciocco, and B.D. Morreale, High-temperature kinetics of the homogeneous reverse water–gas shift reaction, AIChE Journal, 50(5), 2004, 1028–1041.
  6. [6] G.C. Wang, L. Jiang, Y.H. Zhou, Z.S. Cai, Y.M. Pan, X.Z. Zhao, Y.W. Li, Y.H. Sun, B. Zhong, X.Y. Pang, W. Huang, and K.C. Xie, Investigation of the kinetic properties for the forward and reverse WGS reaction by energetic analysis, Journal of Molecular Structure-Theochem, 634, 2003, 23–30.
  7. [7] J.E. Whitlow and C.F. Parrish, Operation, modeling and analysis of the reverse water gas shift process, Space Technology and Applications International Forum – Staif, 654, 2003, 1116–1123.
  8. [8] J.L. Hu, K.P. Brooks, J.D. Holladay, D.T. Howe, and T.M. Simon, Catalyst development for microchannel reactors for Martian in situ propellant production, Catalysis Today, 125(1–2), 2007, 103–110.
  9. [9] C.S. Chen and W.H. Cheng, Study on the mechanism of CO formation in reverse water gas shift reaction over Cu/SiO2 catalyst by pulse reaction, TPD and TPR, Catalysis Letters, 83(3–4), 2002, 121–126.
  10. [10] J.D. Holladay, K.P. Brooks, P. Humble, J. Hu, and T.M. Simon, Compact reverse water-gas-shift reactor for extraterrestrial in situ resource utilization, Journal of Propulsion and Power, 24(3), 2008, 578–582.
  11. [11] K. Brooks, S. Rassat, J. Hu, S. Stenkamp, S. Schlahta, J. Bontha, J. Holladay, T. Simon, K. Romig, and C. Howard, Development of a microchannel in situ propellant production system, Space Technology and Applications International Forum – Staif, 813, 2006, 1111–1121.
  12. [12] J.D. Holladay, K.P. Brooks, R. Wegeng, J. Hu, J. Sanders, and S. Baird, Microreactor development for Martian in situ propellant production, Catalysis Today, 120(1), 2007, 35–44.
  13. [13] L.H. Wang, S.X. Zhang, and Y.A. Liu, Reverse water gas shift reaction over co-precipitated Ni-CeO2 catalysts, Journal of Rare Earths, 26(1), 2008, 66–70.
  14. [14] H. Gunes and R. Yildirim, Low temperature water-gas shift reaction on Au-CeO2/Al2O3 catalysts, International Journal of Chemical Reactor Engineering, 8(1), 2010.
  15. [15] S.W. Park, O.S. Joo, K.D. Jung, H. Kim, and S.H. Han, Development of ZnO/Al2O3 catalyst for reverse-water-gas-shift reaction of CAMERE (carbon dioxide hydrogenation to form methanol via a reverse-water-gas-shift reaction) process, Applied Catalysis a-General, 211(1), 2001, 81–90.
  16. [16] F.D. Doty, G.N. Doty, J.P. Staab, and L.L. Holte, Toward efficient reduction of CO2 to Co for renewable fuels, Es2010: Proc. ASME 4th Int. Conf. on Energy Sustainability, 1, 2010, 775–784.
  17. [17] M. Peer, S.M. Kamali, M. Mahdeyarfar, and T. Mohammadi, Separation of hydrogen from carbon monoxide using a hollow fiber polyimide membrane: experimental and simulation, Chemical Engineering and Technology, 30(10), 2007, 1418–1425.
  18. [18] A. Brunetti, G. Barbieri, and E. Drioli, Integrated membrane system for pure hydrogen production: a Pd-Ag membrane reactor and a PEMFC, Fuel Processing Technology, 92(1), 2011, 166–174.
  19. [19] S. Shelley, Capturing CO2: membrane systems move forward, Chemical Engineering Progress, 105(4), 2009, 42–47.
  20. [20] R.C. Costello and Assoc., Inc. COPureSM carbon monoxide purification technology, http://www.rccostello.com/copure.html.
  21. [21] K.S. Walton and M.D. LeVan, A novel adsorption cycle for CO2 recovery: experimental and theoretical investigations of a temperature swing compression process, Separation Science and Technology, 41(3), 2006, 485–500.
  22. [22] G.W. Chen and Q. Yuan, Methanol synthesis from CO2 using a silicone rubber/ceramic composite membrane reactor, Separation and Purification Technology, 34(1–3), 2004, 227–237.
  23. [23] E.R. Riegel, Coal technology, in J.A. Kent (Ed.), Riegel’s handbook of industrial chemistry (Springer, 2003), 626.
  24. [24] J. Levene, B. Kroposki, and G. Sverdrup, Wind energy and production of hydrogen and electricity – opportunities for renewable hydrogen, NREL/CP-560-39534, National Renewable Energy Laboratory, 2006.

Important Links:

Go Back