CONSERVATIVE LEVEL SET METHOD WITHOUT RE-INITIALIZATION PROCESS: APPLICATION TO MULTIPHASE FLOWS

M’hamed Boutaous, Rabie El Otmani, and Hamda Benhadid

References

  1. [1] J.P. Best, The formation of toroidal bubbles upon the collapse of transient cavities, Journal of Fluid Mechanics, 251, 1993, 79.
  2. [2] T.J.R. Hughes, W.K. Liu, and T.K. Zimmermann, Lagrangian–Eulerian finite element formulation for incompressible viscousflows, Computational Methods on Application Mechanical En-gineering, 29, 1981, 329.
  3. [3] M. Mehravaran and S.K. Hannani, Simulation of incompressibletwo-phase flows with large density differences employing latticeBoltzmann and level set methods, Computational Methods onApplication Mechanical Engineering, 198, 2008, 223–233.
  4. [4] J.A. Sethian, Level set methods and fast marching methods,(California, Berkeley: Cambridge University Press, 1999).
  5. [5] M. Sussman, P. Smereka, and S.J. Osher, A level set approachfor computing solutions to incompressible two-phase flows,Journal of Computational Physics, 114, 1994, 146.
  6. [6] G. Son, A level set method for incompressible two-fluid flowswith immersed solid boundaries, Numerical Heat Transfer,Part B Fundamentals, 47, 2005, 473–489.
  7. [7] N. Ashgriz and J.Y. Poo, Coalescence and separation in binary collisions of liquid drops, Journal of Fluid Mechanics, 221, 1990, 183.
  8. [8] M. Passandideh-Fard and E. Roohi, Coalescence collision of two droplets: bubble entrapment and the effects of important pa-rameters, 14th Annual (International) Mechanical EngineeringConference, Isfahan, May 2006.
  9. [9] F. Mashayek, N. Ashgriz, W.J. Minkowycz, and B. Shotorban,Coalescence collision of liquid drops, International Journal ofHeat Mass Transfer, 46, 2003, 77–89.
  10. [10] M. Sussman, E. Fatemi, P. Smereka, and S. Osher, An improved level set method for incompressible two-fluid flows,Computational Fluids, 27, 1998, 663.
  11. [11] Y.C. Chang, T.Y. Hou, B. Merriman, and S. Osher, A levelset formulation of Eulerian interface capturing methods forincompressible fluid flows, Journal of Computational Physics, 124, 1996, 449–464.
  12. [12] A. Bourlioux, A coupled level-set volume-of-fluid algorithm for tracking material interfaces, Proc. 6th Int. Symp. on Compu-tational Fluid Dynamics, Lake Tahoe, CA, 1995, 15–22.
  13. [13] M. Sussman and E.G. Puckett, A coupled level set and volume-of-fluid method for computing 3D and axisymmetric incom-pressible two-phase flows, Journal of Computational Physics,162, 2000, 301–337.
  14. [14] G. Son and N. Hur, A coupled level set and volume-of-fluidmethod for the buoyancy-driven motion of fluid particles,Numerical Heat Transfer B, 42, 2002, 523–542.
  15. [15] P.A. Berthelsen, A short introduction to the level set method and incompressible two-phase flow, a computational approach, NTNU Report, Norway, 2002, petronics.ntm.no.
  16. [16] J.U. Brackbill, D.B. Kothe, and C. Zemach, A continuummethod for modelling surface tension, Journal of Computa-tional Physics, 100, 1992, 335.
  17. [17] C. Li, C. Xu, C. Gui, and M.D. Fox, Level set evolutionwithout re-initialization: a new variational formulation, Proc.2005 IEEE Computer Society Conf. on Computer Vision andPattern Recognition, San Diego, USA, 2005.
  18. [18] C. Chen and L.-S. Fan, Discrete simulation of gas-liquid bubble columns and gas-liquid-solid fluidized beds, AIChE Journal, 50 (2), 2004, 288–300.
  19. [19] A. Tomiyama, Struggle with computational bubble dynamics,Third International Conference on Multiphase Flow, ICMF’98Proceedings, Lyon, France, 1998.
  20. [20] A. Tomiyama, G.P. Celata, S. Hosokawa, and S. Yoshida,Terminal velocity of single bubbles in surface tension forcedominant regime, International Journal of Multiphase Flow,28, 2002, 1497–1520.
  21. [21] E. Delnoij, Numerical simulation of bubble coalescence using a volume-of-fluid (VOF) model, Proc. Int. Conf. MultiphaseFlow, ICMF’98, Lyon, France, 1998.
  22. [22] R. Krishna and J.M. Van Basten, Rise characteristics of gasbubbles in a 2D rectangular column: VOF simulations vsexperiments, International Communications in Heat and MassTransfer, 26 (7), 1999, 965–974.
  23. [23] F. Bertola, G. Baldi, D. Marchisio, and M. Vanni, Momentumtransfer in a swarm of bubbles: estimates from fluid-dynamicsimulations, Chemical Engineering Science, 59 (22–23), 2004,5209–5215.
  24. [24] W. Dijkhuizen, E.I.V. van den Hengel, N.G. Deen, M.V.S.Annaland, and J.A.M. Kuipers, Numerical investigation ofclosures for interface forces acting on single air-bubbles in water using volume of fluid and front tracking models, ChemicalEngineering Science, 60, 2005, 6169–6175.
  25. [25] M.V.S. Annaland, W. Dijkhuizen, N.G. Deen, and J.A.M.Kuipers, Numerical simulation of gas bubbles behaviour usinga 3D front tracking method, AIChE Journal, 52, 2006, 99–110.
  26. [26] R. Clift, J.R. Grace, and M.E. Weber, Bubbles, drops andparticles (San Diego: Academic Press, 1968).
  27. [27] L.S. Fan and K. Tsuchiya, Bubble wake dynamics in liquids and liquid–solid suspensions (Boston: Butterworth-Heinemann,1990).
  28. [28] R.M. Davies and G. Taylor, The mechanics of large bubblesrising through extended liquids and through liquids in tubes,Proceedings of the Society Series, 200 (A), 1950, 375.
  29. [29] M.A.R. Talaia, Terminal velocity of a bubble rise in a liquid column, Proceedings of World Academy of Science, Engineering and Technology, 22, ISSN, 1307–6884, 2007.
  30. [30] J. Martin and W. Moyce, An experimental study of the collapse of liquid columns on a rigid horizontal plane, Philosophical Transactions, 244 (A), 1952, 312–324.
  31. [31] E. Marchandise and J.-F. Remacle, A stabilized finite element method using a discontinuous level set approach for solving two phase incompressible flows, Journal of Computational Physics, 219, 2006, 780–800.

Important Links:

Go Back