Create New Account
Login
Search or Buy Articles
Browse Journals
Browse Proceedings
Submit your Paper
Submission Information
Journal Review
Recommend to Your Library
Call for Papers
OPTIMAL CONTROL BY DIRECT APPROXIMATION OF THE GRADIENT OF THE COST-TO-GO
Douglas B. Tweed
References
[1] R.E. Bellman, Adaptive control processes (Princeton, NJ:Princeton University Press, 1961).
[2] F. Cucker and S. Smale, On the mathematical foundations oflearning, Bulletin of the American Mathematical Society, 39,2001, 1–49.
[3] R.S. Sutton and A.G. Barto, Reinforcement learning (Cam-bridge, MA: MIT Press, 1998).
[4] R.S. Sutton, D. McAllester, S. Singh, and Y. Mansour, Policygradient methods for reinforcement learning with functionapproximation, in Advances in neural information processingsystems (Cambridge, MA: MIT Press, 2000).
[5] G. Saridis and C.S. Lee, An approximation theory of optimalcontrol for trainable manipulators, IEEE Transactions onSystems, Man, Cybernetics, 9(3), 1979, 152–159.
[6] R. Beard, G. Saridis, and J. Wen, Galerkin approximations ofthe generalized Hamilton–Jacobi–Bellman equation, Automat-ica, 33(12), 1997, 2159–2177.
[7] M. Abu-Khalaf and F.L. Lewis, Nearly optimal state feedbackcontrol of constrained nonlinear systems using a neural networksHJB approach, Annual Reviews in Control, 28, 2004, 239–251.
[8] M. Abu-Khalaf and F.L. Lewis, Nearly optimal control lawsfor nonlinear systems with saturating actuators using a neuralnetwork HJB approach, Automatica, 41, 2005, 779–791.
[9] F.L. Lewis and M. Abu-Khalaf, A Hamilton–Jacobi setup forconstrained neural network control, IEEE Int. Symposium onIntelligent Control, Houston, TX, 2003.
[10] S.E. Lyshevski, Optimal control of nonlinear continuous-time systems: Design of bounded controllers via generalizednonquadratic functionals, Proc. of American Control Conf.,Philadelphia, Pennsylvania, USA, 1998.
[11] S. Lyshevski, Control systems with engineering applications(Boston, MA: Birkhauser, 2001).
[12] E. Todorov, Optimality principles in sensorimotor control,Nature Neuroscience, 7(9), 2004, 907–915.
[13] A.E. Bryson and Y.C. Ho, Applied optimal control (Washington,DC: Hemisphere, 1975).
[14] M. French, C. Szepesv´ari, and E. Rogers, Performance ofnonlinear approximate adaptive controllers (Chichester: Wiley,2003).
[15] D. Jackson, The general theory of approximation by poly-nomials and trigonometric sums, Bulletin of the AmericanMathematical Society, 27, 1920–21, 415–431.
[16] K.S. Narendra and A.M. Annaswamy, Stable adaptive systems(Engelwood Cliffs, NJ: Prentice-Hall, 1989).
[17] K.J. Astrom and B. Wittenmark, Adaptive control (Reading,MA: Addison-Wesley, 1995).
[18] W. Liu, J. Pr´ıncipe, and S. Haykin, Kernel adaptive filtering(Hoboken, NJ, USA: Wiley, 2010).
[19] D.E. Kirk, Optimal control theory (Englewood Cliffs, NJ:Prentice-Hall, 1970).
[20] J.J.E. Slotine and W. Li, Applied nonlinear control (UpperSaddle River, NJ: Prentice-Hall, 1991).
[21] W. Powell, Approximate dynamic programming (Hoboken, NJ:Wiley, 2007).
[22] F.L. Lewis, S. Jagannathan, and A. Yesildirek, Neural networkcontrol of robot manipulators and nonlinear systems (London:Taylor and Francis, 1999).
[23] M.I. Alomoush, Fractional calculus-based optimal controllers ofautomatic voltage regulator in power system, Control and Intel-ligent Systems, 38, 2010, DOI: 19.2316/Journal.201.2010.1.201-2179.
[24] A. Fekih, Improved LQR-based control approach for highperformance induction motor drives, Control and IntelligentSystems, 2009, DOI: 10.2316/Journal.201.2009.1.201-2014.
[25] N.S. Bhuvaneswari, G. Uma, and T.R. Rangaswamy, Neuralnetwork with dynamic programming for time-optimal control32of conical water level, Control and Intelligent Systems, 2009,DOI: 10.2316/Journal.201.2009.4.201-1939.
[26] J. Peters, R. Tedrake, N. Roy, and J.Morimoto, Robot learning,in C. Sammut and G.I. Webb (eds.), in Encyclopedia of machinelearning (Boston, MA: Springer, 2010), 865–869.
[27] D. Tweed, Visual-motor optimization in binocular control,Vision Research, 37(14), 1997, 1939–1951.
[28] D. Tweed, T. Haslwanter, and M. Fetter, Optimizing gazecontrol in three dimensions, Science, 281, 1998, 1363–1366.
[29] C.M. Harris and D.M. Wolpert, Signal-dependent noise deter-mines motor planning, Nature, 394, 1998, 780–784.
[30] E. Todorov and M.I. Jordan, Optimal feedback control as atheory of motor coordination, Nature Neuroscience, 5, 2002,1226–1235.
Important Links:
Abstract
DOI:
10.2316/Journal.201.2013.1.201-2389
From Journal
(201) Mechatronic Systems and Control (formerly Control and Intelligent Systems) - 2013
Go Back