A NEW APPROACH TO ADAPTIVE FUZZY PI CONTROLLER USING OUTPUT SCALING FACTOR AND REFERENCE MODELS

Nitin J. Patil, Rajan H. Chile, and Laxman M. Waghmare

References

  1. [1] L.A. Zadeh, Fuzzy sets, Information and Control, 8, 1965,338–353.
  2. [2] M. Kadjoudj, M.E. Benbouzid, C. Ghennai, and D. Diallo,A robust hybrid current control for PMSM drives, IEEETransactions on Energy Conversion, 19(1), 2004, 109–115.
  3. [3] J.M. Mendel, Fuzzy logic systems for engineering: A tutorial,IEEE Proc., 83(3), 1995, 345–377.
  4. [4] L. Zhen and L. Xu, Fuzzy learning enhanced speed controlof an indirect field oriented control induction machine drive,IEEE Transactions on Control Systems Technology, 8(2), 2000,270–278.
  5. [5] J.L.S. Neto and H.L. Huy, An improvement fuzzy learningalgorithm for motion control applications, Proc. of the IEEE,Aachen, Germany, 1, 1998, 1–5.
  6. [6] M. Kadjoudj, R. Abdessemed, M.E. Benbouzid, and C. Ghen-nai, Current control of PMSM fed by two and three levels VSI,Proc. of EPE/PEMC, Tuke, Slovakia, 7, 2000, 69–74.
  7. [7] D.S. Reay and M.W. Dunniganu, Learning issues in modelreference based fuzzy control, Proc. of the IEE Control TheoryApplication, 144(6), 1997, 605–611.
  8. [8] M.A. Henson and D.E. Seborg, Input-output linearization ofnon-linear processes, AIChE Journal, 36, 1990, 1753–1757.
  9. [9] W. Kwong and K. Passino, Fuzzy learning systems for air-craft control law reconfiguration,Proc. IEEE Int. Symp. Intell.Contr., Columbus, OH, August 16–18, 1994, 333–338.
  10. [10] W.A. Kwong, K.M. Passino, E.G. Lauknonen, and S.Yurkovich, Expert supervision of fuzzy learning systems forfault tolerant aircraft control, Proc. IEEE, Spec. Issue FuzzyLogic Engg. Application, 83, 1995, 466–483.
  11. [11] K. Pal, R.K. Mudi, and N.R. Pal, A new scheme for fuzzy rule-based system identification and its application to self-tuningfuzzy controllers, IEEE Transactions on Systems Man andCybernetics, 32, 2002, 470–482.
  12. [12] N.J. Patil, R.H. Chile, and L.M. Waghmare, Input scalingfactors based fuzzy adaptive controller, Proc. of Int. Conf. onAdvances in Energy Conversion Technologies, Manipal, India,1, 2010, 432–438.
  13. [13] M. Nour and S.Y.M. Too, Adaptive fuzzy logic speed controllerwith torque adapted gains function for PMSM drive, Journalof Engineering Science and Technology, 1(1), 2006, 59–75.9
  14. [14] I. Erenoglu, I. Eskin, E. Yesil, and M. Guzelkaya, An intelligenthybrid fuzzy PID controller, Proc. of 20th European Conf. onModelling and Simulation, Bonn, Germany, 2, 2006, 115–119.
  15. [15] M. Lee and S. Park, Process control using a neural networkcombined with the conventional PID controllers, InternationalJournal of Control, Automation and System Engineers, 2(3),2000, 196–200.
  16. [16] I. Skrjanc, S. Blazic, and D. Matko, Model reference fuzzyadaptive control as a framework for nonlinear system control,Journal of Intelligent and Robotic Systems, 36, 2003, 331–347.
  17. [17] C. Rusu and S. Eniko, PMSM axis drive controller for therobotic applications, Proc. of 6th Int. Conf. on Electromechan-ical and Power Systems,2007, 203–207.
  18. [18] Y. Wang, P.G.D. Siriwardana, and C.W. de Silva, Multi-robotco-operative transportation of objects using machine learning,International Journal of Robotics and Automation, 26(4), 206,2011.
  19. [19] V. Kumar and A.P. Mittal, Parallel fuzzy P + fuzzy I + fuzzy Dcontroller: Design and performance evaluation, InternationalJournal of Automation and Computing, 2(2), 2009, 54–63.
  20. [20] Y. Yang and C. Zhou, Robust adaptive fuzzy control for per-manent magnet synchronous servomotor drives, InternationalJournal of Intelligent Systems, 20(2), 2005, 153–171.
  21. [21] P.J. Escamilla and N. Mort, Auto-tuning of fuzzy PID con-trollers, Proc. of 15th Triennal World Cong., Barcelona, Spain,2(2), 2002, 151–157.
  22. [22] P. Veena, R. Jeyabharath, and M. Rajaram, Performanceimprovement of direct torque control for switched reluctancemotor using neuro-fuzzy controller, International Journal ofControl and Intelligent Systems, 38(3), 201, 2010.
  23. [23] F. Teng, A. Lotfi, and A. Tsoi, Novel fuzzy controllers withself-tuning capability, Journal of Computers, 3(11), 2008, 9–16.
  24. [24] J.W. Jung, Y.S. Choi, V.Q. Leu, and H.H. Choi, Fuzzy PI-typecurrent controllers for permanent magnet synchronous motors,IET Electrical Power Applications, 5(1), 2011, 143–152.
  25. [25] F. Khoshnoud, H. Owhadi, and C.W. de Silva, Stochasticsimulation of energy extraction with an optically controlledelectromechanical engine, International Journal of Modellingand Simulation, 205, 2011.
  26. [26] P. Ouyang, PD-PD type interactive learning control for timevarying uncertain nonlinear systems, International Journal ofControl and Intelligent Systems, 39(2), 2011, 98–107.
  27. [27] D. Drainkov, H. Hellendoorn, and M. Reinfrank, An introduc-tion to fuzzy control (New York, NY, USA: Springer-VerlagInc., 1993).

Important Links:

Go Back