Create New Account
Login
Search or Buy Articles
Browse Journals
Browse Proceedings
Submit your Paper
Submission Information
Journal Review
Recommend to Your Library
Call for Papers
AN IMPROVED WAVELET-BASED APPROACH FOR ESTIMATING THE VARIANCE OF NOISE IN IMAGES
Tianyi Li, Minghui Wang, and Zujian Huang
References
[1] J. Immerkaer, Fast noise variance estimation,Computer Visionand Image Understanding, 64(2), 1996, 300–302.
[2] K. Rank, M. Lendi, and R. Ubenhauer, Estimation of imagenoise variance,Computer Proceedings of Institute of ElectricalEngineering, Vision, Image, and Signal Processing, 146(2),1999, 80–84.
[3] C. Shen and M. Shih, A fast method for image noise estimationusing laplacian operator and adaptive edge detection, 2008ISCCSP, 2008, 1077–1081.
[4] A. Amer and E. Dubois, Fast and reliable structure-orientedvideo noise estimation, Computer IEEE Transactions on Cir-cuits and Systems for Video Technology, 15(1), 2005, 113–118.
[5] R. Bracho and A.C. Sanderson, Segmentation of image based onintensity gradient information, Proc. Conf. Computer VisionPattern Recognition, San Francisco, CA, USA, 1985.
[6] V. Zlokolica and W. Philips, Motion-detail adaptive k-nn filtervideo denoising, Proc. SPIE Electronic Imaging 5298-47, SanJose, CA, USA, 2004.
[7] E.B. Gindele and N. Serrano, Estimating noise for a digitalimage utilizing updated statistics, US patent 7054501, 2006.
[8] J-M. Jolion, P. Meer, and A. Rosenfeld, A fast parallel algorithmfor blind estimation of noise variance, IEEE Transactionson Pattern Analysis and Machine Intelligence, 12(2), 1990,216–223.
[9] T. Li, M. Wang, and H. Chang, An entropy-based estimation ofnoise variance in wavelet domain, Journal of Beijing Universityof Posts and Telecommunications, 34(5), 2011, 1–5.
[10] D. Donoho and I.M. Johnstone, Ideal spatial adaptation bywavelet shrinkage, Biometrika, 81, 1994, 425–455.
[11] Q. Zhang, D. Liang, and X. Fan, Estimating image noisebased on region segmentation in the wavelet domain, ComputerEngineering, 30(8), 2004, 37–39.
[12] T. Li, M. Wang, and T. Li, Estimating noise parameterbased on the wavelet coefficients estimation of original image,2332010 International Conference on Challenges in EnvironmentalScience and Computer Engineering, 1, 2010, 126–129.
[13] S. Mallat, A wavelet tour of signal processing, 2nd ed. (Peking,China: Academic Press, 1998), 403–404.
[14] M.K. Mihcak, I. Kozintsev, K. Ramchandran, and P. Moulin,Low complexity image denoising based on statistical modelingof wavelet coefficients, IEEE Signal Processing Letters, 6(12),1999, 300–303.
[15] E.P. Simoncelli, Modeling the joint statistics of images in thewavelet domain, Proc. SPIE 44th Annu. Meeting, Denver, CO,1999, 188–195.
[16] A. Pizurica, W. Philips, I. Lemahieu, and M. Acheroy, A jointinter- and intra-scale statistical model for Bayesian waveletbased image denoising, IEEE Transactions on Image Process-ing, 11(5), 2002, 545–557.
[17] J. Portilla, V. Strela, M.J. Wainwright, and E.P. Simoncelli,Image denoising using scale mixtures of Gaussians in thewavelet domain, IEEE Transactions on Image Processing,12(11), 2003, 1338–1351.
Important Links:
Abstract
DOI:
10.2316/Journal.202.2012.4.202-3195
From Journal
(202) International Journal of Computers and Applications - 2012
Go Back