GENERATION OF OBSTACLE AVOIDANCE BASED ON IMAGE FEATURES AND EMBODIMENT

Yuichi Kobayashi, Taichi Okamoto, and Masaki Onishi

References

  1. [1] T. Asfour, K. Regenstein, P. Azad, J. Schroder, A. Bierbaum, N. Vahrenkamp, and R. Dillmann, ARMAR-III, an integrated humanoid platform for sensory-motor control, Proc. IEEE RAS/RSJ Int. Conf. on Humanoid Robots, Genova, Italy, December 2006, 169–175.
  2. [2] T. Inamura, K. Okada, S. Tokutsu, N. Hatao, M. Inaba, and H. Inoue, HRP-2W, a humanoid platform for research on support behavior in daily life environments, Robotics and Autonomous Systems, 57 (2), 2009, 145–154.
  3. [3] J. Miura and K. Ikeuchi, Task-oriented generation of visual sensing strategies in assembly tasks, IEEE Transaction on Pattern Analysis and Machine Intelligence, 20 (2), 1998, 126–138.
  4. [4] J. Takamatsu, K. Ogawara, H. Kimura, and K. Ikeuchi, Recognizing assembly tasks through human demonstration, The International Jounal of Robotics Research, 26 (7), 2007, 641–659.
  5. [5] M. Kojima, K. Okada, and M. Inaba, Manipulation and recognition of objects incorporating joints by a humanoid robot for daily assistive tasks, Proc. 2008 IEEE/RSJ Int. Conf. Intelligent Robots and Systems, Nice, France, September 2008, 1564–1569.
  6. [6] S. Harnad, The Symbol Grounding Problem, Physica D, 40, 1990, 335–346.
  7. [7] M. Lungarella, G. Metta, R. Pfeifer, and G. Sandini, Developmental robotics: A survey, Connection Science, 15 (4), 2003, 151–190.
  8. [8] M. Asada, K. Hosoda, Y. Kuniyoshi, H. Ishiguro, T. Inui, Y. Yoshikawa, M. Ogino, and C. Yoshida, Cognitive developmental robotics: A survey, IEEE Transactions on Autonomous Mental Develepment, 1 (1), 2009, 12–34.
  9. [9] J. Weng, J. McClelland, A. Pentland, O. Sporns, I. Stockman, M. Sur, and E. Thelen, Autonomous mental development by robots and animals, Science, 291, 2001, 599–600.
  10. [10] A. Stoytchev, Some basic principles of developmental robotics, IEEE Transactions on Autonomous Mental Development, 1 (2), 2009, 122–130.
  11. [11] R. Sutton, Verification 2001. http://www.cs.ualberta.ca/˜sutton/IncIdeas/Verification.html
  12. [12] R. Sutton, Verification, the Key to AI 2001, http://www.cs.ualberta.ca/˜sutton/IncIdeas/KeytoAI.html
  13. [13] M. Asada, K. MacDorman, H. Ishiguro, and Y. Kuniyoshi, Cognitive developmental robotics as a new paradigm for the design of humanoid robots, Robotics and Autonomous Systems, 37, 2001, 185–193.
  14. [14] J.J. Gibson, The ecological approach to visual perception (Boston, MA: Houghton Mifflin, 1979).
  15. [15] T. Minato and M. Asada, Towards selective attention: Generating image features by learning a visuo-motor map, Robotics and Autonomous Systems, 45, 2003, 211–221.
  16. [16] P. Fitzpatrick, G. Metta, L. Natalc, S. Rao, and G. Sandini, Learning about objects through action – initial steps towards artificial cognition, Proc. IEEE Int. Conf. Robotics and Automation, 2003, 3140–3145.
  17. [17] A. Stoytchev, Toward video-guided robot behaviors, Proc. 7th Int. Conf. Epigenetic Robotics, Piscataway, NJ, USA, November 2007, 165–172.
  18. [18] R. Sutton, Reinforcement learning (Cambridge, Massachusetts: MIT Press, 1998).
  19. [19] D.P. Bertsekas and J.N. Tsitsiklis, Neuro-dynamic programming (Belmont, Massachusetts: Athena Scientific, 1996).
  20. [20] R. Munos and A. Moore, Variable resolution discretization in optimal control, Machine Learning, 1, 2001, 1–31.
  21. [21] R.A. McCallum, Instance-based utile distinctions for reinforcement learning with hidden state, Proc. 12th Int. Machine Learning Conference, Tahoe City, California, USA, July 1995.
  22. [22] R.A. McCallum, Learning to use selective attention and short-term memory in sequential tasks, Proc. 4th Int. Conf. Simulation of Adaptive Behavior, from Animals to Animats, 4, Cape Cod, Massachusetts, September 1996, 315–324.
  23. [23] L.P. Kaelbling, M.L. Littman, and A.R. Cassandra, Planning and acting in partially observable stochastic domains, Artificial Intelligence, 101 (99), 1998, 134.
  24. [24] D.M. Wolpert and M. Kawato, Multiple paired forward and inverse models for motor control, Neural Networks, 11, 1998, 1317–1329.
  25. [25] M. Haruno, D.M. Wolpert, and M. Kawato, Mosaic model for sensorimotor learning and control, Neural Computation, 13, 2002, 2201–2220.
  26. [26] K. Doya, K. Samejima, K. Katagiri, and M. Kawato, Multiple model-based reinforcement learning, Neural Computation, 14, 2002, 1347–1369.
  27. [27] J. Tani, M. Ito, and Y. Sugita, Self-organization of distributedly represented multiple behavior schemata in a mirror system: Reviews of robot experiments using RNNPB, Neural Networks, 17, 2004, 1273–1289.
  28. [28] V. Zhumatiy, F. Gomez, M. Hutter, and J. Schmidhuber, Metric state space reinforcement learning for a vision-capable mobile robot, in T. Arai, et al. (eds.) Intelligent Autonomous Systems, 9, (Amsterdam: IOS Press, 2006), 272–281.
  29. [29] M. Iida, M. Sugisaka, and K. Shibata, Application of direct-vision-based reinforcement learning to a real mobile robot with a CCD camera, Proc. AROB Int Symp. Artificial Life and Robotics 8th, Oita, Japan, January 2003, 86–89.
  30. [30] C. Nabeshima, Y. Kuniyoshi, and M. Lungarella, Adaptive body schema for robotic tool-use, Advanced Robotics, 20 (10), 2006, 1105–1126.
  31. [31] A. Pitti, H. Mori, S. Kouzuma, and Y. Kuniyoshi, Contingency perception and agency measure in visuo-motor spiking neural networks, IEEE Transactions on Autonomous Mental Development, 1 (1), 2009, 86–97.
  32. [32] T. Okamoto, Y. Kobayashi, and M. Onishi, Acquisition of body and object representation based on motion learning and planning framework, Proc. 9th Int. Conf. Intelligent Systems Design and Applications, Pisa, Italy, November 2009, 737–742.
  33. [33] D.G. Lowe, Object recognition from local scale-invariant features, Proc. IEEE Int. Conf. Computer Vision, Kerkyra, Greece, September 1999, 1150–1157.
  34. [34] A. Chavez and H. Raposo, Robot path planning using SIFT and sonar sensor fusion, Proc. of 7th WSEAS Int. Conf. Robotics, Control & Manufacturing Technology, Hangzhou, China, April 2007, 251–256.
  35. [35] L. Itti, C. Koch, and E. Niebur, A model of saliency-based visual attention for rapid scene analysis, IEEE Transactions on Pattern Analysis and Machine Intelligence, 20 (11), 1998, 1254–1259.
  36. [36] D. Comaniciu and P. Meer, Mean shift: A robust approach toward feature space analysis, IEEE Transaction Pattern Analysis Machine Intelligence, 24 (5), 2002, 603–619.
  37. [37] Y. Ke and R. Sukthankar, PCA-SIFT: A more distinctive representation for local image descriptors, Proceedings IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2, 2004, 506–513.
  38. [38] J. Sturm, C. Plagemann, and W. Burgard, Adaptive body scheme models for robust robotic manipulation, Proc. Robotics: Science and Systems, Zurich, Switzerland, June 2008.
  39. [39] P.Y. Oudeyer, F. Kaplan, and V. Hafner, Intrinsic motivation systems for autonomous mental development, IEEE Transactions on Evolutionary Computation, 11 (2), 2007, 265–286.

Important Links:

Go Back