Chengju J. Liu, Danwei W. Wang, and Qijun J. Chen


  1. [1] M. Kalakrishnan, J. Buchli, P. Pastor, M. Mistry, et al., Fast, robust quadruped locomotion over challenging terrain, IEEE Conf. on Robotics and Automation, Anchorage, AK, 2010, 2665–2670.
  2. [2] M. Kalakrishnan, J. Buchli, P. Pastor, M. Mistry, et al., Learning, planning, and control for quadruped locomotion over challenging terrain, International Journal of Robotics Research, 30(2), 2011, 236–258.
  3. [3] S. Kagami, T. Kitagawa, K. Nishiwaki, T. Sugihara, et al., A fast dynamically equilibrated walking trajectory generation method of humanoid robot, Autonomous Robots, 12(1), 2002, 71–82.
  4. [4] J.H. Kim, Y. Xiang, R.M. Bhatt, and J. Yang, Generation effective whole-body motions of a human-link mechanism with efficient ZMP formulation, International Journal of Robotics and Automation, 24, 2009, DOI: 10.2316/Journal.206.2009.2.206-3235.
  5. [5] S. Ma, T. Tomiyama, and H. Wada, Omnidirectional static walking of a quadruped robot, IEEE Trans on Robotics, 21(2), 2005, 152–161.
  6. [6] O. Kwon, K.S. Jeon, and J.H. Park, Optimal trajectory generation for biped robots walking up-and-down stairs, Journal of Mechanical Science and Technology, 20(5), 2006, 612–620.
  7. [7] A.J. Ijspeert, Central pattern generators for locomotion control in animals and robots: A review, Neural Networks, 21(4), 2008, 642–653.
  8. [8] Q.D. Wu, C.J. Liu, J.Q. Zhang, and Q.J. Chen, Survey of locomotion control of legged robots inspired by biological concept, Science China, 52(10), 2009, 1715–1729.
  9. [9] F. Delcomyn, Neural basis for rhythmic behaviour in animals, Science, 210(4469), 1980, 492–498.
  10. [10] A.H. Cohen, Evolution of the vertebrate central pattern generator for locomotion, in A.H. Cohen, S. Rossignol, S. Grillner (eds.), Neural control of rhythmic movements in vertebrates (Hoboken, New Jersey: John Wiley & Sons, 1988), 129–166.
  11. [11] T.G. Brown, On the nature of the fundamental activity of the nervous centres; together with an analysis of the conditioning of rhythmic activity in progression, and a theory of the evolution of function in the nervous system, Journal of Physiology, 48(1), 1914, 18–46.
  12. [12] S. Grillner, Neural control of vertebrate locomotion – central mechanisms and reflex interaction with special reference to the cat, in W.J.P. Barnes (ed.), Feedback and motor control in invertebrates and vertebrates (Kent, UK: Croom Helm, 1985), 35–56.
  13. [13] J.G. Cheng, R.B. Stein, K. Jovanovic, K. Yoshida, et al., Identification, localization, and modulation of neural networks for walking in the mudpuppy (necturus maculatus) spinal cord, Journal of Neuroscience, 18(11), 1998, 4295–4304.
  14. [14] T.L. Williams, K.A. Sigvardt, N. Kopell, G.B. Ermentrout, et al., Forcing of coupled nonlinear oscillators: Studies of intersegmental coordination in the lamprey locomotor central pattern generator, Journal of Neurophysiology, 64(3), 1990, 862–871.
  15. [15] S. Rossignol, R. Dubuc, and J.P. Gossard, Dynamic sensorimotor interactions in locomotion, Physiological Reviews, 86(1), 2006, 89–154.
  16. [16] J.J. Kim, J.W. Lee, and J.J. Lee, Central pattern generator parameter search for a biped walking robot using nonparametric estimation based particle swarm optimization, International Journal of control, Automation, and Systems, 7(3), 2009, 447–457.
  17. [17] Y. Son, T. Kamano, T. Yasuno, T. Suzuki, et al., Generation of adaptive gait patterns for quadruped robot with CPG network including motor dynamic model, Electrical Engineering in Japan, 155(1), 2006, 35–42.
  18. [18] Y. Nakamura, T. Mori, M. Sato, S. Ishii, et al., Reinforcement learning for a biped robot based on a CPG-actor-critic method, Neural Networks, 20(6), 2007, 723–735.
  19. [19] Y. Fukuoka and H. Kimura, Dynamic locomotion of a biomorphic quadruped “Tekken robot using various gaits: Walk, trot, free-gait and bound, Applied Bionics and Biomechanics, 6(1), 2009, 1–9.
  20. [20] A.J. Ijspeert, A. Crespi, and J.M. Cabelguen, Simulation and robotics studies of salamander locomotion: Applying neurobiological principles to the control of locomotion in robots, Neuro Informatics, 3(3), 2005, 171–196.
  21. [21] I.I. Za’balawi, L.C. Kiong, W.E. Kiong, and S.M.N.A.Senanayake, Global entrainment effect on biped robot locomotion, International Journal of Robotics and Automation, 24, 2009, DOI: 10.2316/Journal.206.2009.4.206-3219.
  22. [22] X.L. Zhang and H.J. Zheng, Walking up and down hill with a biologically-inspired postural reflex in a quadrupedal robot, Autonomous Robots, 25(1–2), 2008, 15–24.
  23. [23] H. Kimura, S. Akiyama, and K. Sakurama, Realization of dynamic walking and running of the quadruped using neuraloscillator, Autonomous Robots, 7(3), 1999, 247–258.
  24. [24] A.J. Ijspeert, A. Crespi, and J.M. Cabelguen, Simulation and robotics studies of salamander locomotion: Applying neurobiological principles to the control of locomotion in robots, Neuro Informatics, 3(3), 2005, 171-196.
  25. [25] J. Conradt, Distributed central pattern generator control for a serpentine robot, IEEE Conf. on Artificial Neural Networks, Istanbul, Turkey, 2003, 338–341.
  26. [26] K. Inoue, S. Ma, and C. Jin, Neural oscillator network-based controller for meandering locomotion of snake-like robots, IEEE Conf. on Robotics and Automation, New Orleans, LA, 2004, 5064–5069.
  27. [27] Z.L. Lu, S.G. Ma, B. Li, and Y.C. Wang, 3D locomotion of a snake-like robot controlled by cyclic inhibitory CPG model, IEEE Conf. on Robotics and Automation, Beijing, 2006, 3897–3902.
  28. [28] K. Tsuchiya, K. Tsujita, K. Manabu, and S. Aoi, An emergent control of gait patterns of legged locomotion robots, The Symposium on Intelligent Autonomous Vehicles, Sapporo, Japan, 2001, 271–276.
  29. [29] K. Tsujitat, K. Tsuchiyat, and A. Onatt, Adaptive gait pattern control of a quadruped locomotion robot, IEEE Conf. on Intelligent Robots and Systems, Maui, HI, 2001, 2318–2325.
  30. [30] Y. Fukuoka, H. Kimura, and A.H. Cohen, Adaptive dynamic walking of a quadruped robot on irregular terrain based on biological concepts, International Journal of Robotic Research 22(3–4), 2003, 187–202.
  31. [31] G. Endo, J. Nakanishi, J. Morimoto, and G. Cheng, Experimental studies of a neural oscillator for biped locomotion with QRIO, IEEE Conf. on Robotics and Automation, Barcelona, Spain, 2005, 596–602.
  32. [32] G. Endo, J. Morimoto, T. Matsubara, J. Nakanishi, et al., Learning CPG-based biped locomotion with a policy gradient method: Application to a humanoid robot, International Journal of Robotics Research, 27(2), 2008, 213–228.
  33. [33] C.J. Liu, Q.J. Chen, and D.W. Wang, CPG-inspired workspace trajectory generation and adaptive locomotion control for quadruped robots, Transactions on Systems, Man and Cybernetics – Part B, 41(3), 2011, 867–880.
  34. [34] J.A. Acebrón, L.L. Bonilla, C.J. Pérez, F. Ritort, et al., The Kuramoto model: A simple paradigm for synchronization phenomena, Reviews of Modern Physics, 77(1), 2005, 137–185.
  35. [35] U. Duffert, Quadruped walking modeling and optimization of robot movements, http://uwe-dueffert.de/publication/dueffert04diploma.pdf (2004).

Important Links:

Go Back