A HIERARCHICAL DESIGN APPROACH FOR INTERVAL TYPE-2 FUZZY CONTROLLERS APPLIED TO MOBILE ROBOTS

Miguel A. Melgarejo, Carlos M. Munoz, and Leonardo Leottau

References

  1. [1] J.M. Mendel, R.I. John, and F. Liu, Interval type-2 fuzzy logic systems made simple, IEEE Transactions on Fuzzy Systems, 14, 2006, 808–821.
  2. [2] J.M. Mendel, Rule-based fuzzy logic systems, introduction and new direction (Upper Saddle River, NJ: Prentice Hall, 2001).
  3. [3] H. Hagras, Type-2 FLCs: A new generation of fuzzy controllers, IEEE Computational Intelligence Magazine, 2(1), 2007, 30–43.
  4. [4] L.X. Wang, A course in fuzzy systems and control (UpperSaddle River, NJ: Prentice Hall, 1997).
  5. [5] R.I. John and S. Coupland, Type-2 fuzzy logic: A historical view, IEEE Computational Intelligence Magazine, 2(1), 2007, 57–62.
  6. [6] J. Figueroa, J. Posada, J. Soriano, M. Melgarejo, and S. Rojas, A type-2 fuzzy logic controller for tracking mobile objects in the context of robotic soccer games, Proc. 2005 IEEE Int. Conf. on Fuzzy Systems, Reno, NV, 2005, 359–364.
  7. [7] H. Hagras, A type-2 fuzzy logic controller for autonomous mobile robots, Proc. 2004 IEEE Int. Conf. on Fuzzy Systems, Budapest, 2004, 965–970.
  8. [8] O. Linda and M. Manic, Comparative analysis of type-1and type-2 fuzzy control in context of learning behaviors for mobile robotics, Proc. 36th Annual Conf. on IEEE Industrial Electronics Society, Glendale, AZ, 2010, 1092–1098.
  9. [9] O. Castillo, P. Melin, A. Alanis Garza, O. Montiel, and R. Sepúlveda, Optimization of interval type-2 fuzzy logic controllers using evolutionary algorithms, Soft Computing, 15(6), 2011, 1145–1160.
  10. [10] O. Castillo, Interval type-2 fuzzy logic for control applications, Proc. 2010 IEEE Int. Conf. on Granular Computing, Silicon Valley, USA, 2010, 79–84.
  11. [11] N.R. Cázarez-Castro, L.T. Aguilar, and O. Castillo, Fuzzy logic control with genetic membership function parameters optimization for the output regulation of a servomechanism with nonlinear backlash, Expert Systems with Applications, 37(6), 2010, 4368–4378.
  12. [12] R. Martínez-Soto, O. Castillo, and L.T. Aguilar, Optimization of interval type-2 fuzzy logic controllers for a perturbed autonomous wheeled mobile robot using genetic algorithms, Information Sciences, 179(13), 2009, 2158–2174.
  13. [13] O. Castillo, L.T. Aguilar, N.R. Cázarez-Castro, and S. Cardenas, Systematic design of a stable type-2 fuzzy logic controller, Applied Soft Computing, 8(3), 2008, 1274–1279.
  14. [14] H. Hagras, Developing a type-2 FLC through embedded type-1 FLCs, Proc. FUZZ-IEEE 2008, Hong Kong, 2008, 148–155.
  15. [15] P. Torres and D. Saez, Type-2 fuzzy logic identification applied to the modeling of a robot hand, Proc. FUZZ-IEEE 2008, Hong Kong, 2008, 854–861.
  16. [16] J. Cao, H. Liu, P. Li, and D. Brown, Adaptive fuzzy logic controller for vehicle active suspensions with interval type-2 fuzzy membership functions, Proc. FUZZ-IEEE 2008, Hong Kong, 2008, 83–89.
  17. [17] R. Martinez, O. Castillo, and L. Aguilar, Optimization with genetic algorithms of interval type-2 fuzzy logic controllers for an autonomous wheeled mobile robot: A comparison under different kinds of perturbations, Proc. FUZZ-IEEE 2008, Hong Kong, 2008, 901–908.
  18. [18] R. Martinez, A. Rodriguez, O. Castillo, P. Melin, and L.T. Aguilar, Optimization of type-2 fuzzy logic controllers for mobile robots using evolutionary methods, Proc. 2009 IEEE Int. Conf. on Systems, Man and Cybernetics, San Antonio, TX, 2009, 4764–4769.
  19. [19] R. Martinez-Marroquin, O. Castillo, and J. Soria, Parameter tuning of membership functions of a type-1 and type-2 fuzzy logic controller for an autonomous wheeled mobile robot using ant colony optimization, Proc. 2009 IEEE Int. Conf. on Systems, Man and Cybernetics, San Antonio, TX, 2009, 4770–4775.
  20. [20] L. Leottau and M. Melgarejo, A simple approach for designing a type-2 fuzzy controller for a mobile robot application, Proc. NAFIPS 2010, Toronto, ON, 2010.
  21. [21] J.R. Castro, O. Castillo, P. Melin, and A.R. Díaz, Building fuzzy inference systems with a new interval type-2 fuzzy logic toolbox, Transactions on Computational Science I, Springer-Verlag Berlin, Heidelberg, 2008, 104–114.
  22. [22] B. Kuo and F. Golnaraghi, Automatic control systems (Englewood Cliffs: Prentice Hall, 1996).
  23. [23] D. Wu and W. Tan, Type-2 FLS modeling capability analysis, Proc. 2005 IEEE Int. Conf. on Fuzzy Systems, Reno, NV, 2005, 242–247.
  24. [24] J. Castro, O. Castillo, and P. Melin, An interval type-2 fuzzy logic toolbox for control applications, Proc. FUZZ-IEEE, 2007, London, UK, 2007.
  25. [25] J.R. Castro, O. Castillo, and L.G. Martínez, Interval type-2 fuzzy logic toolbox, Engineering Letters, 15(1), 2007, 89–98.
  26. [26] L. Jingtao, G. Xueshan, H. Qiang, and O. Matsumoto, Controller design of a two-wheeled inverted pendulum mobile robot, Proc. ICMA 2008, Takamatsu, Kagawa, Japan, 2008, 7–12.
  27. [27] T. Takei, R. Imamura, and S. Yuta, Baggage, transportation and navigation by a wheeled inverted pendulum mobile robot, IEEE Transactions on Industrial Electronics, 56(10), 2009, 3985–3994.
  28. [28] H. Hagras, A hierarchical type-2 fuzzy logic control architecture for autonomous mobile robots, IEEE Transactions on Fuzzy Systems, 12(4), 2004, 524–539.

Important Links:

Go Back