Ravi Kaushik, Jizhong Xiao, Samleo L. Joseph, and William Morris


  1. [1] J.J. Leonard and H.F. Durrant-Whyte, Simultaneous mapbuilding and localization for an autonomous mobile robot,Proc. IEEE/RSJ International Workshop on Intelligent Robotsand Systems, Osaka, Japan, 1991.
  2. [2] R. Kaushik, Y. Feng, W. Morris, J. Xiao, and Z. Zhu, 3D Mapconstruction using multiple heterogeneous robots, Proc. 10thInternational Conference on Control, Automation, Roboticsand Vision, Hanoi, Vietnam, 2008, 1230–1235.
  3. [3] A.J. Davison, I.D. Reid, N.D. Molton, and O. Stasse,MonoSLAM: Real-time single camera SLAM, IEEE Transac-tions on Pattern Analysis and Machine Intelligence, 29 (6),2007, 1052–1067.
  4. [4] M. Tomono, Robust 3D SLAM with a stereo camera basedon an edge-point ICP algorithm, Proc. IEEE InternationalConference on Robotics and Automation, Kobe, Japan, 2009,4306–4311.
  5. [5] P. Jensfelt, D. Kragic, J. Folkesson, and M. Bj¨orkman, Aframework for vision based bearing only 3D SLAM, Proc.IEEE International Conference on Robotics and Automation,Orlando, Florida, 2006, 1944–1950.
  6. [6] L.M. Paz, P. pini´es, J.D. Tard´os, and J. Neira, Large scale6-DOF SLAM with stereo-in-hand, IEEE Transactions onRobotics, 24 (5), 2008, 946–957.
  7. [7] L.-P. Ellekilde, S. Huang, J.V. Mir´o, and G. Dissanayake,Dense 3D map construction for indoor search and rescue,Journal of Field Robotics, 24, 2007, 71–89.
  8. [8] R. Hartley and A. Zisserman, Multiple view geometry incomputer vision (Cambridge, MA: Cambridge University Press,2004).
  9. [9] T. Asai, M. Kanbara, and N. Yokoya, 3D modelling of outdoorenvironments by integrating omnidirectional range and colourimages, Proc. International Conference on 3-D Digital Imagingand Modelling, 2005, 447–454.
  10. [10] S. Thrun, W. Burgard, and D. Fox, Probabilistic robotics(Boston, MA: The MIT Press, 2005).
  11. [11] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit, Fast-SLAM: A factored solution to the simultaneous mapping andlocalization, Proc. AAAI National Conference on ArtificialIntelligence, Edmonton, Canada, 2002, 593–598.
  12. [12] S. Thrun, Y. Liu, D. Koller, A.Y. Ng, Z. Ghahramani, andH. Durrant-Whyte, Simultaneous localization and mappingwith sparse extended information filters, The InternationalJournal of Robotics Research, 23 (7–8), 2004, 693–716.
  13. [13] D.G. Lowe, Distinctive image features from scale-invariantkeypoints, International Journal of Computer Vision, 60 (2),2004, 91–110.
  14. [14] M.A. Fischler and R.C. Bolles, Random sample consensus: aparadigm for model fitting with applications to image analysisand automated cartography, Graphics and Image Processing,24 (6), 1981, 381–395.
  15. [15] Y. Feng, Z. Zhu, and J. Xiao, Self-localization of a het-erogeneous multi-robot team in constrained 3D space, Proc.IEEE/RSJ International Conference on Intelligent Robots andSystems, 2007, 1343–1350.
  16. [16] R. Kaushik, J. Xiao, W. Morris, and Z. Zhu, 3D laser scanregistration of dual-robot system using vision, Proc. 2009IEEE/RSJ International Conference on Intelligent Robots andSystems, St. Louis, USA, 2009.
  17. [17] J. Weingarten and R. Siegwart, EKF-based 3D SLAM forstructured environment reconstruction, Proc. IEEE/RSJ In-ternational Conference on Intelligent Robots and Systems,2005, 3834–3839.
  18. [18] J. Weingarten, G. Gruener, and R. Siegwart, A fast and robust3d feature extraction algorithm for structured environmentreconstruction, Proc. International Conference on AdvancedRobotics, Coimbra, Portugal, 2003.
  19. [19] Y. Liu, R. Emery, D. Chakrabarti, W. Burgard, and S. Thrun,Using EM to learn 3D models of indoor environments withmobile robots, Proc. 18th International Conference on MachineLearning, 2001, 329–336.
  20. [20] D. H¨ahnel, W. Burgard, and S. Thrun, Learning compact 3Dmodels of indoor and outdoor environments with a mobilerobot, Robotics and Autonomous Systems, 44 (1), 2003, 15–27.
  21. [21] A. N¨uchter, K. Lingemann, J. Hertzberg, and H. Surmann,Heuristic-based laser scan matching for outdoor 6D SLAM,Proc. Advances in Artificial Intelligence. 28th Annual GermanConference on AI, Germany, 2005, 304–319.
  22. [22] S. Grzonka, G. Grisetti, and W. Burgard, Towards a navigationsystem for autonomous indoor flying, Proc. IEEE InternationalConference on Robotics and Automation, Kobe, Japan, 2009.
  23. [23] K. Pathak, A. Birk, N. Vaskevicius, M. Pfingsthorn, S. Schw-ertfeger, and J. Poppinga, Online 3D SLAM by registrationof large planar surface segments and closed form pose-graphrelaxation, Journal of Field Robotics, 27 (1), 2010, 52–84.
  24. [24] S. Thrun, C. Martin, Y. Liu, D. H¨ahnel, R. Emery-Montemerlo,D. Chakrabarti, and W. Burgard, A real time expectation-maximization algorithm for acquiring multiplanar maps ofindoor environments with mobile robots, IEEE Transactionson Robotics, 20 (3), 2004, 433–442.
  25. [25] D. Borrmann, J. Elseberg, K. Lingemann, A. N¨uchter, andJ. Hertzberg, Globally consistent 3D mapping with scan match-ing, Robotics and Autonomous Systems, 56 (2), 2008, 130–142.
  26. [26] E. Takeuchi and T. Tsubouchi, A 3-D scan matching using im-proved 3-D normal distributions transform for mobile roboticmapping, Proc. IEEE/RSJ International Conference on Intel-ligent Robots and Systems, Beijing, China, 2006, 3068–3073.
  27. [27] S. Thrun, A probabilistic online mapping algorithm for teams ofmobile robots, The International Journal of Robotics Research,20 (5), 2001, 335–363.
  28. [28] K. Pathak, N. Vaskevicius, J. Poppinga, M. Pfingsthorn, S.Schwertfeger, and A. Birk, Fast 3D mapping by matching planesextracted from range sensor point-clouds, Proc. IEEE/RSJInternational Conference on Intelligent Robots and Systems,St. Louis, MO, USA, 2009.
  29. [29] G. Turk and M. Levoy, Zippered polygon meshes from rangeimages, Proc. 21st International Conference on ComputerGraphics and Interactive Techniques, 1994, 311–318.
  30. [30] M. Garland and P.S. Heckbert, Surface simplification usingQuadric Error metrics, Proc. SIGGRAPH ’97: Conference onComputer Graphics and Interactive Techniques, 1997, 209–216.
  31. [31] H. Hoppe, Progressive meshes, Proc. SIGGRAPH ’96: Confer-ence on Computer Graphics and Interactive Techniques, 1996,99–108.
  32. [32] I. Stamos and P.K. Allen, 3-D Model construction using rangeand image data, Proc. IEEE International Conference onComputer Vision and pattern Recognition, SC, USA, 2000,531–536.121
  33. [33] D. H¨ahnel and W. Burgard, Probabilistic matching for 3Dscan registration, Proc. VDI-Conference Robotik, 2002.
  34. [34] J. Weingarten and R. Siegwart, 3D SLAM using planar seg-ments, Proc. IEEE/RSJ International Conference on Intelli-gent Robots and Systems, 2006, 3062–3067.
  35. [35] P.J. Besl and N.D. McKay, A method of registration of 3-Dshapes, IEEE Transactions on Pattern Analysis and MachineIntelligence, 14 (2), 1992, 239–256.
  36. [36] A. N¨uchter, 3D Robotic Mapping: The simultaneous localiza-tion and mapping problem in six degrees of freedom (Berlin:Springer-Verlag, 2009).
  37. [37] S. Rusinkiewicz and M. Levoy, Efficient variants of the ICPalgorithm, Proc. 3rd International Conference on 3D DigitalImaging and Modelling, 2001, 145–152.
  38. [38] F. Lu and E. Milios, Robot pose estimation in unknown envi-ronments by matching 2D range scans, Journal of Intelligentand Robotic Systems, 18 (3), 1997, 249–275.
  39. [39] O. Bengtsson and A.-J. Baerveldt, Robot localization based onscan-matching-estimating the covariance matrix for the IDCalgorithm, Robotics and Autonomous Systems, 44 (1), 2003,29–40.
  40. [40] P. Biber and W. Straber, The normal distributions transform:A new approach to laser scan matching, Proc. IEEE Inter-national Conference on Intelligent Robots and Systems, LasVegas, Nevada, 2003, 2743–2748.
  41. [41] M. Magnusson, H. Andreasson, A. N¨uchter, and A.J. Lilienthal,Appearance-based loop detection from 3D laser data usingthe normal distributions transform, Proc. IEEE InternationalConference on Robotics and Automation, Kobe, Japan, 2009,23–28.
  42. [42] D. Sandberg, K. Wolff, and M. Wahde, A robot localizationmethod based on laser scan matching, Proc. FIRA RoboWorldCongress 2009 — Advances in Robotics Incheon, Korea, 2009,171–178.
  43. [43] A.R. Specht, A.D. Sappa, and M. Devy, Edge registrationversus trangular mesh registration, a comparative study, SignalProcessing: Image Communication, 20 (9–10), 2005, 853–868.
  44. [44] J. Poppinga, N. Vaskevicius, A. Birk, and K. Pathak, Fast planedetection and polygonalization in noisy 3D range images, Proc.IEEE/RSJ International Conference on Intelligent Robots andSystems, Nice, France, 2008, 3378–3383.
  45. [45] B.K.P. Horn, Closed-form solution of absolute orientation usingunit Quarternions, Journal of the Optical Society of America,4 (4), 1987, 629–642.
  46. [46] Y. Feng, Z. Zhu, and J. Xiao, Heterogeneous multi-robot local-ization in unknown 3D space, Proc. IEEE/RSJ InternationalConference on Intelligent Robots and Systems, Beijing, China,2006, 4533–4538.
  47. [47] R.M. Haralick, C.-N. Lee, K. Ottenberg, and M. Nolle, Analysisand solutions of the three point perspective pose estimationproblem, Proc. IEEE Computer Society Conference on InComputer Vision and Pattern Recognition, 1991, 592–598.
  48. [48] M.A. Abidi and T. Chandra, A new efficient and direct solutionfor pose estimation using quadrangular targets: algorithmand evaluation, IEEE Transactions on Pattern Analysis andMachine Intelligence, 17 (5), 1995, 534–538.
  49. [49] H. Kato and M. Billinghurst, Marker tracking and HMDcalibration for a video-based augmented reality conferencingsystem, Proc. International Workshop on Augmented RealitySan Francisco, USA, 1999.
  50. [50] G. Schweighofer and A. Pinz, Robot pose estimation from aplanar target, IEEE Transactions on Pattern Analysis andMachine Intelligence, 28 (12), 2006, 2024–2030.
  51. [51] C.-P. Lu, G.D. Hager, and E. Mjolsness, Fast and globallyconvergent pose estimation from video images, IEEE Trans-actions on Pattern Analysis and Machine Intelligence, 22 (6),2000, 610–622.
  52. [52] Z. Zhang, A flexible new technique for camera calibration,Microsoft Research, 1998.
  53. [53] X.-S. Gao, X.-R. Hou, J. Tang, and H.-F. Cheng, Completesolution classification for the perspective-three-point problem,Proc. IEEE Transactions on Pattern Recognition and MachineIntelligence, 2003, 930–943.
  54. [54] L. Quan and Z. Lan, Linear N >=4 point pose determination,Proc. Sixth International Conference on Computer Vision,1998, 778–783.
  55. [55] J. Heikkil¨a and O. Silv´en, A four-step camera calibration proce-dure with implicit image correction, Proc. IEEE InternationalConference on Computer Vision and Pattern Recognition, SanJuan, Puerto Rico, 1997.
  56. [56] H. Surmann, A. N¨uchter, and J. Hertzberg, An autonomousmobile robot with a 3D laser range finder for 3D exploration anddigitization of indoor environments, Robotics and AutonomousSystems, 45 (3–4), 2003, 181–198.
  57. [57] R. Kaushik, S.L. Joseph, J. Xiao, and W. Morris, Fast planarclustering and polygonal extraction from noisy range imagesacquired in indoor environments, Proc. IEEE InternationalConference on Mechatronics and Automation Xian, China,2010, 1976–1981.
  58. [58] T. Rofer, Using histogram correlation to create consistentlaser scan maps, Proc. IEEE/RSJ International Conference onIntelligent Robots and Systems, Lausanne, Switzerland, 2002,625–630.
  59. [59] A. Hoover, G. Jean-Baptiste, X. Jiang, P.J. Flynn, H. Bunke,D.B. Goldgof, K. Bowyer, D.W. Eggert, A. Flitzgibbon, andR.B. Fisher, An experimental comparison of range image seg-mentation algorithms, IEEE Transactions on Pattern Analysisand Machine Intelligence, 18 (7), 2002, 673–689.
  60. [60] R. Triebel, W. Burgard, and F. Dellaert, Using hierarchical EMto extract planes from 3d range scans, Proc. IEEE InternationalConference on Robotics and Automation, Barcelona, Spain,2005, 4437–4442.
  61. [61] S. Kurogi, D. Wakeyama, H. Koya, S. Okada, S. Inoue, andT. Nishida, Application of CAN2 to plane extraction from 3Drange images, Proc. IEEE International Joint Conference onNeural Networks (IEEE World Congress on ComputationalIntelligence), Hongkong, China, 2008, 2327–2332.
  62. [62] V. Gelder, Efficient Computation of Polygon Area and Polyhe-dron Volume, in Graphic Gems V, ed: Academic Press, 1995,pp. 35–41.
  63. [63] D. Marquardt, An Algorithm for least squares estimation ofnonlinear parameters, SIAM Journal of Applied Mathematics,11, 1963, 431–441.
  64. [64] H. Surmann, A. N¨uchter, K. Lingemann, and J. Hertzberg,6D SLAM – Preliminary Report on Closing The Loop inSix Dimensions, Proc. 5th IFAC Symposium on IntelligentAutonomous Vehicles, Lisabon, 2004.

Important Links:

Go Back