HEURISTIC JUSTIFICATION AND DIFFERENTIAL EVOLUTION-BASED FINAL SELF-RESTORATION STATE OPTIMIZATION FOR URBAN POWER GRID AFTER BLACKOUT

Yang Ruan and Rongxiang Yuan

References

  1. [1] M.M. Adibi & N. Martins, Power system restoration dynamicsissues, IEEE/PES General Meeting, 2008.
  2. [2] K. Matsumoto, T. Sakaguchi, R.J. Kafka, & M.M. Adibi,Knowledge-based systems as operational aids in power systemrestoration, Proc. of the IEEE, 80(5), 1992, 689–697.
  3. [3] M.M. Adibi, R.J. Kafka, & D.P. Milanicz, Expert systemrequirements for power system restoration, IEEE Transactionson Power Systems, 9(3), 1994, 1592–600.
  4. [4] Y.-M. Park & K.-H. Lee, Application of expert system to powersystem restoration in sub-control center, IEEE Transactionson Power Systems, 12(2), 1997, 629–635.
  5. [5] C.Y. Teo & W. Shen, Development of an interactive rule-basedsystem for bulk power system restoration, IEEE Transactionson Power Systems, 15(2), 2000, 646–653.
  6. [6] S. Srivastava & K.L. Butler-Purry, Expert system method forautomatic reconfiguration for restoration of shipboard powersystems, IET Generation, Transmission and Distribution,153(3), 2006, 253–260.
  7. [7] A.C.B. Delbem, A. de Carvalho, & N.G. Bretas, Main chainrepresentation for evolutionary algorithms applied to distri-bution system reconfiguration, IEEE Transactions on PowerSystems, 20(1), 2005, 425–436.
  8. [8] T. Nagata, H. Sasaki, & R. Yokoyama, Power system restora-tion by joint usage of expert system and mathematical pro-gramming approach, IEEE Transactions on Power Systems,10(3), 1995, 1473–1479.
  9. [9] Y. Kojima, S. Warashina, S. Nakamura, & K. Matsumoto, De-velopment of a guidance method for power system restoration,IEEE Transactions on Power Systems, 4(3), 1989, 1219–1227.
  10. [10] Y. Liu & X. Gu, Skeleton-network reconfiguration based ontopological characteristics of scale-free networks and discreteparticle swarm optimization, IEEE Transactions on PowerSystems, 22(3), 2007, 1267–1274.
  11. [11] R. Storn & K. Price, Differential evolution – a simple andefficient adaptive scheme for global optimization over con-tinuous spaces, Technical report TR-95-012, InternationalComputational Science Institute, Berkley, 1995.
  12. [12] R. Storn & K. Price, Differential evolution – a simple andefficient heuristic for global optimization over continuousspaces, Journal of Global Optimization, 17, 1997, 341–359.
  13. [13] C.H. Liang, C.Y. Chung, K.P. Wong, X.Z. Duan, & C.T. Tse,Study of differential evolution for optimal reactive power flow,IET Generation,Transmission and Distribution, 1(2), 2007,253–260.
  14. [14] M. Varadarajan & K.S. Swarup, Differential evolutionaryalgorithm for optimal reactive power dispatch, InternationalJournal of Electrical Power & Energy Systems, 30(8), 2008,435–441.
  15. [15] M. Varadarajan & K.S. Swarup, Network loss minimizationwith voltage security using differential evolution, ElectricPower Systems Research, 78(5), 2008, 815–823.
  16. [16] J. Brest, S. Greiner, B. Boskovic, M. Mernik, & V. Zumer,Self-adapting control parameters in differential evolution: acomparative study on numerical benchmark problems, IEEETransactions on Evolutionary Computation, 10(6), 2006, 646–657.120u

Important Links:

Go Back