Cheng Xiang, Ling-Ling Cao, Qing-Guo Wang, and Tong-Heng Lee
[1] M. Chidambaram, Control of unstable systems: a review,Journal of Energy of Heat and Mass Transfer, 19, 1997, 49–56. [2] J.P. Richard, Time-delay system: an overview of recent ad-vances and open problems, Automatica, 39 (10), 2003, 1667–1694. [3] K.Q. Gu & S.L. Niculescu, Survey on recent results in stabilityand control of time-delay systems, Transactions of ASME,125, 2003, 158–165. [4] L. Mirkin & N. Raskin, Every stabilizing dead-time con-troller has an oberver-predictor-based structure, Automatica,39, 2003, 1747–1754.138 [5] L. Wang & W.R. Cluett, Tuning PID controllers for inte-grating for integrating processes, IEE Proc. Control TheoryApplications, 144 (5), 1997, 385–392. [6] S. Majhi & D.P. Atherton, Autotuning and controller designfor processes with small time delay, IEE Proc. Control TheoryApplications, 146 (5), 1999, 415–425. [7] Q.G. Wang, T.H. Lee, W.F. Ho, Q. Bi, & Y. Zhang, PID tuningfor improved performance, IEEE Transactions on ControlSystems Technology, 7 (4), 1999, 457–465. [8] G.K.I. Mann, B.G. Hu, & R.G. Gosine, Time-domain baseddesign and analysis of new PID tuning rules, IEE Proc. ControlTheory Applications, 148 (3), 2001, 251–261. [9] R. Padma Sree, M.N. Srinivas, & M. Chidambaram, A simplemethod of tuning PID controllers for stable and unstableFOPTD systems, Computers and Chemical Engineering, 28,2004, 2201–2218. [10] A. Seshagiri Rao & M. Chidambaram, Enhanced two-degrees-of-freedom control strategy for second-order unstable processeswith time delay, Industrial and Engineering Chemistry Re-search, 45, 2006, 3604–3614. [11] L. Ou, W. Zhang, & D. Gu, Sets of stabilising PID controllersfor second-order integrating processes with time delay, IEEProc. Control Theory Applications, 153 (5), 2006, 607–614. [12] T. Kawabe & T. Tagami, A partial model matching design ofrobust 2-DOF PID controller for time-delay systems, Controland Intelligent Systems, 34 (3), 2006, 236–242. [13] H.P. Huang & C.C. Chen, On stabilizing a time delayedunstable process, Journal of the Chinese Institute of ChemicalEngineers, 28 (4), 1997, 289–299. [14] H.P. Huang & C.C. Chen, Control system synthesis for open-loop unstable process with time delay, IEE Proc. ControlTheory Application, 144 (4), 1997, 334–346. [15] W.K. Ho & W. Xu, PID tuning for unstable processes basedon gain and phase-margin specifications, IEE Proc. ControlTheory Application, 145 (5), 1998, 392–396. [16] Q.G. Wang, H.W. Fung, & Y. Zhang, PID tuning with exactgain and phase margins, ISA Transactions, 38, 1999, 243–249. [17] C. Xiang, Q.G. Wang, X. Lu, L.A. Nguyen, & T.H. Lee,Stabilization of second order unstable delay processes by simplecontrollers, Journal of Process Control, 17 (8), 2007, 675–682. [18] O.J. Smith, A controller to overcome dead time, ISA Journal,6, 1959, 28–33. [19] M.R. Matauˇsek & A.D. Mici´c, A modified smith predictorfor controlling a process with an integrator and long dead-time, IEEE Transactions on Automatic Control, 41 (8), 1996,1199–1203. [20] W.D. Zhang, Y.X. Sun, & X.M. Xu, Two degree-of-freedomSmith predictor for processes with time delay, Automatica,34 (10), 1998, 1279–1282. [21] K.K. Tan, T.H. Lee, & F.M. Leu, Optimal smith-predictordesign based on a GPC approach, Industrial and EngineeringChemistry Research, 41, 2002, 1242–1248. [22] T. Liu, Y.Z. Cai, D.Y. Gu, & W.D. Zhang, New modified Smithpredictor scheme for integrating and unstable processes withtime delay, IEE Proc. Control Theory Applications, 152 (2),2005, 238–246. [23] Z. Artstein, Linear system with delayed control: a reduction,IEEE Trans Autom. Control, 27 (4), 1982, 869–879. [24] A.Z. Manitius & A.W. Olbrot, Finite spectrum assignmentproblem for systems with delays, IEEE Transactions on Au-tomatic Control, 24 (4), 1979, 541–553. [25] Q.G. Wang, T.H. Lee, & K.K. Tan, Finite spectrum assignmentfor time-delay systems (London: Springer, 1998). [26] C. Xiang, L.L. Cao, Q.G. Wang, & T.H. Lee, Design ofpredictor-based controllers for input-delay systems. Proc.of 2008 IEEE Int. Symp. on Industrial Electronics, IEEE2008ISIE, Cambridge University, Cambridge, UK, 2008,1009–1014. [27] Q.C. Zhong, Robust control of time-delay systems (London:Springer, 2006). [28] G. Meinsma & H. Zwart, On H∞ control for dead timesystems, IEEE Transactions on Automatic Control, 45 (2),2000, 272–285. [29] Q.C. Zhong, H∞ control of deadtime systems based on atransformation, Automatica, 39 (2), 2003, 361–366. [30] J. Yang, Robust mixed H2/H∞ control for uncertain systemswith time delay, Control and Intelligent Systems, 37 (1), 2009,1–9. [31] M.C. Pai, Dynamic output feedback sliding mode control foruncertain systems with state and input delay, Control andIntelligent Systems, 36 (1), 2008, 92–97. [32] M.C. Pai, Robust tracking and model following of time-delaysystems, Control and Intelligent Systems, 37 (3), 2009, 135–143. [33] F. Mazenc & P.A. Bliman, Backstepping design for time-delaynonlinear systems, IEEE Transactions on Automatic Control,51 (1), 2006, 149–154. [34] T. Oguchi, A finite spectrum assignment for retarded nonlinearsystems and its solvobility condition, International Journal ofControl, 80 (6), 2007, 898–907. [35] J. Stoer & R. Bulirsch, Introduction to numerical analysisSecond Edition (New York: Springer-Verlag, 1993). [36] C. Runge, ¨Uber die numerische aufl¨osung von differentialgle-ichungen. Math. Ann. 46, 1895, 167–178. [37] W. Kutta, Beitrag zur n¨aherungsweisen integration totalerdifferentialgleichungen, Z. Math. Phys., 46, 1901, 435–453. [38] Z.J. Palmor, Time-delay compensation: Smith predictor andits modifications, in W.S. Levine (Ed.), The Control Handbook,(New York: CRC Press, 1995). [39] A.W. Olbrot, Finite spectrum property and predictors, AnnualReviews in Control, 24, 2000, 125–134. [40] M.A. Henson & D.E. Seborg (Eds), Nonlinear process control,(New Jersy: Prentice Hall), 1997, 177. [41] M. Krsti´c, I. Kanellakopoulos, & P. Kokotovi´c, Nonlinearadaptive control design (John Wiley & Sons, Inc., 1995).
Important Links:
Go Back