AN ALTERNATIVE TO THE BESSEL K FORM DISTRIBUTION

Pavel A. Khazron and Ivan W. Selesnick

References

  1. [1] D. Teichroew, The mixture of normal distributions with differ-ent variances, The Annals of Mathematical Statistics, 28 (2),1957, 510–512.
  2. [2] U. Grenander & A. Srivastava, Probability models for clutterin natural images, IEEE Transactions on Pattern Analysis andMachine Intelligence, 23 (4), 2001, 424–429.
  3. [3] A. Srivastava, X. Liu, & U. Grenander, Universal analyticalforms for modeling image probabilities, IEEE Transactionson Pattern Analysis and Machine Intelligence, 24 (9), 2002,1200–1214.
  4. [4] L. Boubchir & J.M. Fadili, Bayesian denoising based on theMAP estimation in wavelet-domain using Bessel K form prior,IEEE International Conference on Image Processing (ICIP),1, September, 2005.
  5. [5] J.M. Fadili & L. Boubchir, Analytical form for a Bayesianwavelet estimator of images using the Bessel K form densities,IEEE Transactions on Image Processing, 14 (2), 2005, 231–240.
  6. [6] S. Nadarajah & S. Kotz, The BKF Bayesian wavelet estimator,Signal Processing, 87 (9), 2007, 2268–2271.
  7. [7] I.W. Selesnick, The estimation of Laplace random vectors inadditive white Gaussian noise, IEEE Transactions on SignalProcessing, 56 (8), 2008, 3482–3496.
  8. [8] T. Eltoft, T. Kim, & T.W. Lee, On the multivariate Laplacedistribution, IEEE Signal Processing Letters, 13 (5), 2006,300–303.
  9. [9] P.A. Khazron & I.W. Selesnick, Bayesian estimation of BesselK form random vectors in AWGN, IEEE Signal ProcessingLetters, 15, 2008, 261–264.
  10. [10] T. Eltoft, T. Kim, & T.W. Lee, Multivariate scale mixtureof Gaussians modeling, Independent Component Analysis andBlind Signal Separation, Springer, Berlin/Heidelberg, 2006,799–806.
  11. [11] R.D. Gupta & D. Kundu, Generalized exponential distribution:Existing results and some recent developments, Journal ofStatistical Planning and Inference, 137 (11), 2007, 3537–3547.
  12. [12] R.D. Gupta & D. Kundu, Closeness of gamma and general-ized exponential distribution, Communications in Statistics –Theory and Methods, 32 (4), 2003, 705–721.
  13. [13] S. Kotz, T. Kozubowski, & K. Podgorski, The Laplace distri-bution and generalizations (Boston, Basel, Berlin: Birkhauser,2001).
  14. [14] I.S. Gradshteyn & I.M. Ryzhik, Table of integrals, series, andproducts, Fourth Edition. (New York: Academic Press, 1965).
  15. [15] L. Scharf, Statistical signal processing (Reading, MA: Addison-Wesley, 1991).
  16. [16] M.J. Wainwright & E.P. Simoncelli, Scale mixtures of gaussiansand the statistics of natural images, S.A. Solla, T.K. Leen,and K.R. M¨uller (eds.) in Advances in Neural InformationProcessing Systems (Cambridge, MA: MIT Press, 2000), 855–861.
  17. [17] R.D. Gupta & D. Kundu, Generalized exponential distribu-tion: Different method of estimations, Journal of StatisticalComputation and Simulation, 00 (4), 2000, 1–22.
  18. [18] H. White, Maximum likelihood estimation of misspecifiedmodels, Econometrica, 50 (1), 1982, 1–25.
  19. [19] G. McLachlan & T. Krishnan, The EM algorithm and exten-sions (New York: Wiley, 1997).
  20. [20] C.F.J. Wu, On the convergence properties of the EM algorithm,Annals of Statistics, 11 (1), 1983, 95–103.
  21. [21] M.T. Boudjelkha & M.A. Chaudhry, On the approximationof a generalized incomplete Gamma function arising in heatconduction problems, Journal of Mathematical Analysis andApplications, 248 (2), 2000, 509–519.

Important Links:

Go Back