STABILIZATION OF DYNAMICAL SYSTEMS BY DIRECT MINIMIZATION OF KINETIC ENERGY

Majura F. Selekwa

References

  1. [1] A. Lyapunov, Problém Géneral de la Stabilité du Movement, vol. 17, Annals of Mathematical Studies (Princenton University Press, Princeton, NJ, 1949).
  2. [2] R.E. Kalman & J.E. Bertram, Control system analysis and design via the second method of Lyapunov: I continuous-time systems, Transactions of ASME: Journal of Basic Engineering, 82, 1960, 371–393.
  3. [3] R.E. Kalman, Contributions to the theory of optimal control, Boletin Sociedad Matemática Mexicana, 5(1), 1960, 102–119. a
  4. [4] R.E. Kalman, Lyapunov functions for the problem of lur’e in automatic control, Proceedings of the National Academy of Sciences of the United States of America, 49(2), 1963, 201–205.
  5. [5] R.E. Kalman, When is a linear control system optimal?, Transactions of ASME: Journal of Basic Engineering, 86, 1964, 51–60.
  6. [6] V.A. Yakubovich, The matrix inequality method in the theory of stability of nonlinear control systems – part 1, Automation and Remote Control, 25, 1964, 1017–1029.
  7. [7] V.A. Yakubovich, The matrix inequality method in the theory of stability of nonlinear control systems – part 2, Automation and Remote Control, 26, 1965, 577–590.
  8. [8] V.A. Yakubovich, The matrix inequality method in the theory of stability of nonlinear control systems – part 3, Automation and Remote Control, 26, 1965, 753–763.
  9. [9] V.M. Popov, Absolute stability of nonlinear systems of automatic control, Automation and Remote Control, 22, 1962, 857–875.
  10. [10] V.M. Popov, Hyperstability and optimality of automatic systems with several control functions, Revue Roumaine des Sciences Techniques Serie Electrotechnique Energetique, 9(4), 1964, 629–690.
  11. [11] H.K. Khalil, Nonlinear systems (Upper Saddle River, NJ: Prentice Hall, 2002).
  12. [12] Z. Artstein, Relaxed controls and the dynamics of control systems, SIAM Journal on Control and Optimization, 16(5), 1978, 689–701.
  13. [13] E.D. Sontag, A Lyapunov-like characterization of asymptotic controllability, SIAM Journal on Control and Optimization, 21(3), 1983, 462–471.
  14. [14] E.D. Sontag, A "Universal" construction of Artstein’s theorem on nonlinear stabilization, Systems and Control Letters, 13(2), 1989, 117–123.
  15. [15] P. Kokotović & M. Arcak, Constructive nonlinear control: a c historical persepective, Automatica, 37, 2001, 637–662.
  16. [16] B. Anderson & P. Moylan, Synthesis of linear time-varying passive networks, IEEE Transactions on Circuits and Systems, 21(5), 1974, 678–687.
  17. [17] D.J. Hill & P.J. Moylan, Stability results for nonlinear feedback systems, Automatica, 13(4), 1977, 377–382.
  18. [18] A.J. van der Schaft, Stabilization of hamiltonian systems, Non-Linear Analysis, 10(10), 1986, 1021–1036.
  19. [19] D.J. Hill & P.J. Moyland, Dissipative dynamical systems: basic input–output state and properties, Journal of the Franklin Institute, 309(5), 1980, 327–357.
  20. [20] D.J. Hill, Dissipative nonlinear systems: basic properties and stability analysis, Proceedings of the 31st IEEE Conference on Decision and Control, 1992, 3259–3264.
  21. [21] A. van der Schaft, L2 -gain and passivity techniques in nonlinear control, Second Edition (Communications and Control Engineering, Springer, 2000).
  22. [22] F. Bullo & A.D. Lewis, Geometric control of mechanical systems, vol. 49, Texts in Applied Mathematics (Springer Verlag, New York-Heidelberg-Berlin, 2004).
  23. [23] R. Ortega, M.W. Spong, F. Gomez-Estern, & G. Blankenstein, Stabilization of a class of underactuated mechanical systems via interconnection and damping assignment, IEEE Transactions on Automatic Control, 47(8), 2002, 1218–1233.
  24. [24] A.M. Bloch, N.E. Leonard, & J.E. Marsden, Controlled Lagrangians and the stabilization of mechanical systems. I. The first matching theorem, IEEE Transactions on Automatic Control, 45(12), 2000, 2253–2270.
  25. [25] A.M. Bloch, D.E. Chang, N.E. Leonard, & J.E. Marsden, Controlled Lagrangians and the stabilization of mechanical systems. II. Potential shaping, IEEE Transactions on Automatic Control, 46 (10), 2001, 1556–1571.
  26. [26] R. Ortega, A. van der Schaft, I. Mareels, & B. Maschke, Putting energy back in control, IEEE Control System Magazine, 21(2), 2001, 18–33.
  27. [27] B. Maschke, R. Ortega, & A.J. Van Der Schaft, Energybased Lyapunov functions for forced hamiltonian systems with dissipation, IEEE Transactions on Automatic Control, 45(8), 2000, 1498–1502.
  28. [28] R. Ortega, I. Mareels, A.J. van der Schaft, & B. Maschke, Energy shaping revisited, Proc. of the 2000 IEEE Int. Conf. on Control Applications, 2000, 121–126.
  29. [29] W.M. Haddad, S.G. Nersesov, & V. Chellaboina, Energybased control for hybrid port-controlled Hamiltonian systems, Automatica, 39(8), 2003, 1425–1435.
  30. [30] X. Wu, J.F. Zhu, J.Z. He, & H. Zhang, On stabilization of energy for Hamiltonian systems, Computer Physics Communications, 175(1), 2006, 15–24.
  31. [31] A.D. Lewis, Potential energy shaping after kinetic energy shaping, Proc. of the 45th IEEE Conf. on Decision and Control, 2006, 3339–3344.
  32. [32] A.D. Lewis, Is it worth learning differential geometric methods for modelling and control of mechanical systems?, Robotica, 26(6), 2007, 765–777.
  33. [33] B. Gharesifard, A.D. Lewis, & A.-R. Mansouri, A geometric framework for stabilization by energy shaping: sufficient conditions for existence of solutions, Communications for Information and Systems, 8(4), 2008, 353–398.
  34. [34] J.M. Avis, S.G. Nersesov, & R. Nathan, Energy-based hybrid control for the rtac system: experimental results, Proc. of the American Control Conference, 2008, 3331–3336.
  35. [35] R. Bellman, Stability theory of differential equations (New York, Toronto, London: McGraw-Hill, 1953).
  36. [36] F.V. At, On a class of algorithms for finding the maximum eigenvalue and corresponding eigenvector of an irreducible non-negative matrix, USSR Computational Mathematics and Mathematics Physics, 27(6), 1987, 1–8.
  37. [37] W.S. Levine & M. Athans, On determination of the optimal constant output feedback gains for linearmultivariable systems, IEEE Transactions on Automatic Control, AC-15(1), 1970, 44–48.
  38. [38] D.L. Kleinman, An easy way to stabilize a linear constant system, IEEE Transactions on Auttomatic Control, AC-15, 1970, 692.
  39. [39] E.S. Armstrong, An extension of bass’ algorithm for stabilizing linear continuous constant systems, IEEE Transactions on Automatic Control, 20(1), 1975, 153–154.
  40. [40] J. Polendo & C. Qian, A universal method for robust stabilization of nonlinear systems: unification and extension of smooth and non-smooth approaches, Proc. American Continent Conf., Minneapolis, Minnesota, USA, 2006, 4285–4290.

Important Links:

Go Back