FRACTIONAL CALCULUS-BASED OPTIMAL CONTROLLERS OF AUTOMATIC VOLTAGE REGULATOR IN POWER SYSTEM

M.I. Alomoush

References

  1. [1] H. Saadat, Power system analysis (New York: McGraw-Hill,1999).
  2. [2] P. Kundur, Power system stability and control (New York:McGraw-Hill, 1994).
  3. [3] A.J. Wood & B.F. Wollenberg, Power generation, operation47and control (New York: John Wiley, 1984).
  4. [4] A. Abdennour, Multi-objective optimal tuning of power plantcontrols using genetic algorithms, Control and Intelligent sys-tems, 32 (2), 2004, 80–88.
  5. [5] Z. Al-Hamouz, S.F. Faisal, & S. Al-Sharif, Application ofparticle swarm optimization algorithm for optimal reactivepower planning, Control and Intelligent systems, 35 (1), 2007,66–72.
  6. [6] R.C. Dorf & R.H. Bishop, Modern control systems (New Jersey:Prentice Hall, 2001).
  7. [7] D. Xue, Y. Chen, & D.P. Atherton, Linear feedback control:Analysis and design with MATLAB (Philadelphia: SIAM,2007).
  8. [8] J.G. Ziegler & N.B. Nichols, Optimum settings for automaticcontrollers, Transaction of the A.S.M.E. 64, 1942, 759–768.
  9. [9] W. Tan, H.J. Marquez, & T. Chen, Performance assessment ofPID controllers, Control and Intelligent systems, 32 (3), 2004,158–166.
  10. [10] L. Carotenuto, P. Pugliese, & Ya.D. Sergeyev, Maximizingperformance and robustness of PI and PID controllers by globaloptimization, Control and Intelligent systems, 34 (3), 2006,225–235.
  11. [11] K.B. Oldham & J. Spanier, The fractional calculus (New York:Academic Press, 1974).
  12. [12] S.G. Samko, A.A. Kilbas, & O.I. Marichev, Fractional integralsand derivatives and some of their applications (Minsk: Naukai technika, 1987).
  13. [13] K.S. Miller & B. Ross, An introduction to the fractional calculusand fractional differential equations (New York: Wiley, 1993).
  14. [14] I. Podlubny, Fractional differential equations (San Diego: Aca-demic Press, 1999).
  15. [15] I. Podlubny, Fractional-order systems and fractional-ordercontrollers, Institute of Experimental Physics, The SlovakAcademy of Sciences, UEF-03-94, Kosice, Slovak Republic,1994.
  16. [16] S. Manabe, The non-integer integral and its application tocontrol systems, Japanese Institute of Electrical EngineersJournal, 80 (860), 1960, 589–597.
  17. [17] I. Podlubny, Fractional-order systems and PIλDμ-controllers,IEEE Transactions on Automatic Control, 44 (1), 1999, 208–2143.
  18. [18] D. Xue & Y. Chen, A comparative introduction of fourfractional order controllers. Proc. 4th World Congress onIntelligent Control and Automation, Shanghai, China, 4, 2002,3228–3235.
  19. [19] A. Oustaloup, Linear feedback control systems of fractionalorder between 1 and 2, Proc. IEEE Symposium on Circuit andSystems, Chicago, USA, 4, 1981.
  20. [20] I. Petras, The fractional order controllers: Methods for theirsynthesis and application, Journal of Electrical Engineering,50 (9–10), 1999, 284–288.
  21. [21] B.M. Vinagre, I. Podlubny, A. Hernandez, & V. Feliu, Someapproximations of fractional order operators used in controltheory and applications, Fractional Calculus and Applied Anal-ysis, 3, 2000, 231–248.
  22. [22] D. Xue, C. Zhao, & Y. Chen, Fractional order PID control ofa dc-motor with elastic shaft: A case study. Proc. AmericanControl Conference, Minneapolis, Minnesota, USA, 2006.
  23. [23] N. Jaleeli, L.S. VanSlyck, D.N. Ewart, L.H. Fink, & A.G.Hoffmann, Understanding automatic generation control, IEEETransactions on Power Systems, 7 (3), 1992, 1106–1112.
  24. [24] C.T. Pan & C.M. Liaw, An adaptive controller for powersystem load-frequency control, IEEE Transactions on PowerSystems, 14 (1), 1989, 122–128.
  25. [25] J. Talaq & F. Al-Basari, Adaptive fuzzy gain scheduling forload frequency control, IEEE Transactions on Power Systems,14 (1), 1999, 145–150.
  26. [26] Y.L. Abdel-Magid & M.A. Abido, AGC tuning of intercon-nected reheat thermal systems with particle swarm optimiza-tion, Proc. 10th IEEE Int. Conf. on Electronics, Circuits andSystems (ICECS), 1, 2003, 376–379.
  27. [27] H.D. Mathur & H.V. Manjunath, A fuzzy based improved intel-ligent controller for automatic generation control, InternationalJournal of Engineering Simulation, 7 (3), 2006, 29–35.
  28. [28] K. Yamashita & H. Miagi, Multi variable self-tuning regulatorfor LFC system with interaction of voltage on load demand,IEE Proc. Control Theory and Applications, 138 (2), 1991,177–183.
  29. [29] A. Rubaai & V. Udo, Self-tuning LFC: Multi-level adaptiveapproach. IEE Proceeding-C, 141 (4), 1994, 285–290.
  30. [30] M. Aldeen & J.F. Marah, Decentralized proportional-plus-integral design method for inter-connected power systems, IEEProceeding-C, 138 (4), 1991.
  31. [31] A.P. Birch, A.T. Sapeluk, & C.S. Ozveren, An enhancedneural network load frequency control technique. Proc. of IEEConference on Control (Control 9), London, UK, 1 (389), 1994,409–415.
  32. [32] M. Zribi, M. Al-Rashed, & M. Alrifai, Adaptive decentralizedload frequency control of multi-area power systems, ElectricalPower and Energy Systems, 27 (7), 2005, 575–583.
  33. [33] E. Cam & I. Kocaarslan, Load frequency control in two areapower systems using fuzzy logic controller, Energy Conversionand Management, 46 (2), 2005, 233–243.
  34. [34] S.P. Ghoshal, Applications of GA/GASA based fuzzy auto-matic generation control of a multi-area thermal generatingsystem, Electric Power Systems Research, 70 (2), 2004, 115–128.
  35. [35] C.S. Indulkar & B. Raj, Application of fuzzy controller inautomatic generation control, Electric Machines and PowerSystems, 23 (2), 1995, 209–220.
  36. [36] C.S. Chang & W. Fu, Area load frequency control using fuzzygain scheduling of PI controllers, Electrical Power SystemResearch, 42 (2), 1997, 145–152.
  37. [37] C.E. Fosha & O.I. Elgead, The megawatt frequency controlproblem: A new approach via optimal control theory, IEEETransactions on Power Systems, PAS-89, 1970, 563–577.
  38. [38] I. Podlubny, The Laplace transform method for linear differen-tial equations of the fractional order, Institute of ExperimentalPhysics, The Slovak Academy of Sciences, UEF-02-94, Kosice,Slovak Republic, 1994.

Important Links:

Go Back