ON-LINE MONITORING OF PHARMACEUTICAL PRODUCTION PROCESSES BY MEANS OF NEAR INFRARED SPECTRUM WITH HIDDEN MARKOV MODEL

C. Ma, Z.X. Peng, H.K. Xu, and R. Du

References

  1. [1] M. Blanco, R. Gozalez Bano, & E. Bertran, Monitoring powderblending in pharmaceutical processes by use of near infraredspectroscopy, Talanta, 56, 2002, 203–212.
  2. [2] Pfizer Inc., Apparatus for Mixing and Detecting OnlineHomogeneity (US Patent, 95-037575/06 EP 631810-A1, 1993).
  3. [3] O. Berntsson, L.G. Danielsson, B. Lagerholm, & S. Folestad,Quantitative in-line monitoring of powder blending by nearinfrared reflection spectroscopy, Powder Technology, 123, 2002,185–193.
  4. [4] S.S. Sekulic, J.W.P. Doherty, & P.A. Hailey, Automated systemfor the on-line monitoring of powder blending processes usingnear-infrared spectroscopy, part II: Qualitative approaches toblend evaluation, Journal of Pharmaceutical and BiomedicalAnalysis, 17, 1998, 1285–1309.
  5. [5] L.R. Rabiner, A tutorial on hidden Markov models and selectedapplications in speech recognition, Proceedings of the IEEE,77 (2), 1989, 257–286.
  6. [6] M. Ge, R. Du, & Y.S. Xu, Condition monitoring using marginalenergy and hidden Markov model, Control and IntelligentSystems, 32 (1), 2004, 1–9.
  7. [7] H. Zhang, Z.D. Jiang, & R. Du, On-line monitoring of phar-maceutical production processes using hidden markov model,Journal of Pharmaceutical Science, 98 (4), 2009, 1487–1498.
  8. [8] J.F. Mari, J.P. Haton, & A. Kriouile, Automatic word recog-nition based on second-order hidden Markov models, IEEE14Transactions on Speech and Audio Processing, 5 (1), 1997,22–25.
  9. [9] I. Shahin, Using second-order hidden Markov model to improvespeaker identification recognition performance under neutralcondition, Proceeding of the IEEE ICECS, 2003, 124–127.
  10. [10] X.X. Shi, T.J. Wang, & Z.Y. He, The learning algorithm ofthe second order HMM and its relationship with the first orderHMM (in Chinese), Journal of Applied Sciences, 19 (1), 2001,29–32.
  11. [11] A. Hoskuldsson, PLS regression methods, Journal of Chemo-metrics, 2, 1988, 211–228.
  12. [12] C.S. Kok, M. Ong, & P. Raveendran, Variable selection usinggenetic algorithm for analysis of near-infrared spectral datausing partial least squares, Proc. of the 2005 IEEE, Engineeringin Medicine and Biology 27th Annual Conference, Shanghai,China, September 1–4, 2005, 1178–1181.
  13. [13] T.P. Mann, Numerically stable hidden Markov model imple-mentation, http://bozeman.genome.washington.edu/compbio/mbt599_2006/hmm_scaling_revised.pdf (Feb. 21, 2006).
  14. [14] J. Li, X.Y. Zhu, & D. Wang, The research of codebookgeneration algorithm in SCHMM, (in Chinese), ComputerEngineering, 28 (12), 2002, 131–133.
  15. [15] Thermo Electron Co., Antaris MX process analyzer user’sguide (Thermo Electron Corporation, 2007) 56–57.

Important Links:

Go Back