ITERATIVE sIB ALGORITHM BASED ON SIMULATED ANNEALING

H. Yuan, Y. Ye, and J. Deng

References

  1. [1] N. Tishby, F.C. Pereira, & W. Bialek, The information bottleneck method, Proc. 37th Annual Allerton Conference on Communication, Control and Computing, Monticello, 1999, 368–377.
  2. [2] T.M. Cover & J.A. Thomas, Elements of information theory (New York: Plenum Press, 1991).
  3. [3] N. Slonim & N. Tishby, Agglomerative information bottleneck, Proc. Advances in Neural Information Processing Systems(NIPS-1999), Denver, USA, 1999, 617–623.
  4. [4] N. Slonim, The information bottleneck: Theory and application, Doctoral Dissertation, Hebrew University of Jerusalem, Jerusalem, Israel, 2002.
  5. [5] N. Slonim, N. Friedman, & N. Tishby, Unsupervised document classification using sequential information maximization, Proc. 25th Ann. Int. ACM SIGIR Conf. on Research and Development in Information Retrieval, Tampere, Finland, 2002, 129–136.
  6. [6] G. Chechik & N. Tishby, Extracting relevant structures with side information, Proc. Advances in Neural Information Processing Systems(NIPS-2002), Vancouver, British Columbia, CA, 2002, 857–864.
  7. [7] J. Cardinal, Compression of side information, IEEE International Conference on Multimedia and Expo(ICME’03), Maryland, USA, 2003, 569–572.
  8. [8] D. Gondek & T. Hofmann, Conditional information bottleneck clustering, Proc. 3rd IEEE International Conference on Data Mining, Workshop on Clustering Large Data Sets, Melbourne, Florida, USA, 2003.
  9. [9] D. Gondek & T. Hofmann, Non-redundant data clustering, Proc. 4th IEEE International Conference on Data Mining, Washington DC, USA, 2004, 75–82.
  10. [10] N. Friedman, O. Mosenzon, N. Slonim, & N. Tishby, Multivariate information bottleneck, Proc. 17th Conference on Uncertainty in Artificial Intelligence, Seattle, Washington, USA, 2001, 152–161.
  11. [11] N. Friedman, N. Slonim, & T. Tishby, Agglomerative multivariate information bottleneck, Proc. Advances in Neural Information Processing Systems (NIPS-2001), Vancouver, British Columbia, CA, 2001, 617–623.
  12. [12] G. Chechik, A. Globerson, N. Tishby, & Y. Weiss, Information bottleneck for Gaussian variables, Proc. Advances in Neural Information Processing Systems (NIPS-2003), Vancouver, British Columbia, CA, 2003, 165–188.
  13. [13] G. Chechik & A. Globerson, Information bottleneck and linear projections of Gaussian process, Technical Report, School of Engineering and Computer Science, Hebrew University of Jerusalem, Jerusalem, 2003.
  14. [14] A. Cloberson & N. Tishby, Sufficient dimensionality reduction, Journal of Machine Learning Research, 3, 2003, 1307–1331.
  15. [15] R. Gilad-Bachrach, A. Navot, & N. Tishby, An information theoretic tradeoff between complexity and accuracy, Proc. 16’th Conference on Learning Computational Theory, Washington DC, USA, 2003, 595–609.
  16. [16] M.R. Garey, D.S. Johnson, & H.S. Witsenhausen, The complexity of the generalized Lloyd-Max problem, IEEE Transactions on Information Theory, 28(2), 1982, 255–256.
  17. [17] J. Peltonen, J. Sinkkonen, & S. Kaski, Sequential information bottleneck for finite data, Proc. 21st International Conference on Machine Learning (ICML), Banff, Alberta, CA, 2004, 647–654.
  18. [18] R. El-Yaniv, S. Fine, & N. Tishby, Agnostic classification of Markovian sequences, Proc. Advances in Neural Information Processing Systems (NIPS-1997), Denver, Colorado, USA, 1997, 465–471.
  19. [19] J. Lin, Divergence measures based on the Shannon entropy, IEEE Transactions on Information Theory, 37(1), 1991, 145–151.
  20. [20] A.K.C. Wong & M. You, Entropy and distance of random graphs with application to structural pattern recognition, IEEE Transactions on Pattern Analysis and Machine Intelligence, 7, 1985, 599–609.

Important Links:

Go Back