FW_SFS: A NOVEL FEATURE SELECTION METHOD FOR POWER QUALITY DATA MINING

R. Ahila, M. Sudhakaran, and K. Manimala

References

  1. [1] S. Santoso, E.J. Powers, W.M. Grady, & P. Hofmann, Power quality assessment via wavelet transform analysis, IEEE Transactions on Power Delivery, 11(2), 1996, 924–930.
  2. [2] P. Pillay & A. Bhattacharjee, Application of wavelet to model short-term power system disturbances, IEEE Transactions on Power Systems, 11(4), 1996, 2031–2037.
  3. [3] A.M. Gaouda, M.M.A. Salama, M.K. Sultan, & A.Y. Chikhani, Power quality detection and classification using wavelet-multiresolution signal decomposition, IEEE Transactions on Power Delivery, 14(4), 1999, 1469–1476.
  4. [4] L. Angrisani, P. Daponte, M. D’Apuzzo, & A. Testa, A measurement method based on the wavelet transform for power quality analysis, IEEE Transactions on Power Delivery, 13(4), 1998, 990–998.
  5. [5] Z.L. Gaing, Wavelet-based neural network for power disturbance recognition and classification, IEEE Transactions on Power Delivery, 19(4), 2004, 1560–1568.
  6. [6] H. He & J.A. Starzyk, A self-organizing learning array system for power quality classification based on wavelet transform, IEEE Transactions on Power Delivery, 21(1), 2006, 286–295.
  7. [7] P.K. Dash, M. Nayak, M.R. Senapati, & I.W.C. Lee, Mining for similarities in time series data using wavelet based feature vectors and neural networks, Engineering Applications of Artificial Intelligence, 20, 2007, 185–201.
  8. [8] R. Kohavi & G.H. John, Wrappers for feature subset selection, Artificial Intelligence, 97, 1997, 273–324.
  9. [9] B.-H. Juang & S. Katagiri, Discriminative learning for minimum error classification, IEEE Transactions on Signal Processing, 40(12), 1992, 3043–3054.
  10. [10] H. Watanabe, T. Yamaguchi, & S. Katagiri, Discriminative metric design for robust pattern recognition, IEEE Transactions on Signal Processing, 45(11), 1997, 2,655–2,662.
  11. [11] A.K. Jain, R.P.W. Duin, & J. Mao, Statistical pattern recognition: A review, IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(1), 2000, 4–37.
  12. [12] Y. Yang & J.O. Pedersen, A comparative study on feature selection, in Text Categorization, Proc. of the 14th international conference on machine learning (ICML 1997), Nashville, Tennessee, USA, 1997, 412–420.
  13. [13] J. Mao & A.K. Jain, Artificial neural networks for feature selection and multivariate data projection, IEEE Transactions on Neural Networks, 6(2), 1995, 296–317.
  14. [14] M. Pontil & A. Verri, Support vector machines for 3D object recognition, IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(6), 1998, 637–646.
  15. [15] A. Tefas, C. Kotropoulos, & I. Pitas, Using support vector machines to enhance the performance of elastic graph matching for frontal face authentication, IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(7), 2001, 735–746.
  16. [16] S. Tong & E. Change, Support vector machine active learning for image retrieval, Proc. of ACM International Conference on Multimedia, Ottawa, Canada, 2001, 107–118.
  17. [17] P.S. Bradley & O.L. Mangasarian, Feature selection via concave minimization and support vector machines, Proc.of International Conference on Machine Learning, Madison, Wisconson, USA, 1998, 82–90.
  18. [18] J. Weston, S. Mukherjee, O. Chapelle, M. Ponntil, T. Poggio, & V. Vapnik, Feature selection for SVMs, in Advances in neural information processing systems, Vol. 13 (Cambridge, MA: MIT Press, 2001).
  19. [19] K.Z. Mao, Feature subset selection for support vector machines through discriminative function pruning analysis, IEEE Transactions on System Man, and Cybernetics, 34(1), 2004, 60–67.
  20. [20] T. Evgeniou, M. Pontil, C. Papageorgiou, & T. Poggio, Image representation and feature selection for multimedia database search, IEEE Transactions on Knowledge and Data Engineering, 15(4), 2003, 911–920.
  21. [21] V.N. Vapnik, An overview of statistical learning theory, IEEE Transactions on Neural Networks, 10(5), 1999, 988–999.
  22. [22] C. Cortes & V.N. Vapnik, Support vector networks, Machine Learning, 20(3), Bled, Slovenia, 1995, 273–297.
  23. [23] T. Joachims, Transductive inference for text classification using support vector machines, Proc. of International Conference on Machine Learning, 1999, 200–209.
  24. [24] Y. Liu, Y.F. Zheng, X. Shen, & R. Ewing, A GM based multilayer method for object tracking in video sequences, Proc. of International Conference on Information Technology Research and Education, Newark, New Jersy, USA, 2003, 11–16.
  25. [25] J. Przemyslaw & L. Tadeusz, Automated classification of power-quality disturbances using SVM and RBF networks, IEEE Transactions on Power Delivery, 21, 2006, 1663–1669.
  26. [26] S. Chen & H.Y. Zhu, Wavelet transform for processing power quality disturbances, EURASIP Journal on Advances in Signal Processing, 2007, 2007, 20, Article ID 47695.
  27. [27] K.L. Butler-Purry & M. Bagriyanik, Characterization of transients in transformers using discrete wavelet transforms, IEEE Transactions on Power Systems, 18(2), 2003, 648–656.
  28. [28] V.N. Vapnik, The nature of statistical learning theory (New York, Springer, 1995).

Important Links:

Go Back